反演+分块套分块——bzoj2154

题解都在论文里了

#include<bits/stdc++.h>
using namespace std;
#define maxn 10000005
#define ll long long 
#define mod 20101009

bool vis[maxn];
int sum[maxn],prime[maxn],mm,mu[maxn];
void primes(){
    mu[1]=1;
    for(int i=2;i<maxn;i++){
        if(!vis[i]){
            prime[++mm]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=mm;j++){
            if(i*prime[j]>=maxn)break;
            vis[i*prime[j]]=1;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }
            else mu[i*prime[j]]=-mu[i];
        }
    } 
    for(int i=1;i<maxn;i++)
        sum[i]=(sum[i-1]+(ll)mu[i]*i%mod*i%mod)%mod;
}
ll n,m;

inline ll Sum(ll n,ll m){
    ll res1=((1+n)*n/2)%mod; 
    ll res2=((1+m)*m/2)%mod;
    return res1*res2%mod;
}
inline ll F(ll n,ll m){
    ll res=0;
    if(n>m)swap(n,m);
    for(int l=1,r;l<=n;l=r+1){
        r=min(n/(n/l),m/(m/l));
        ll tmp=((sum[r]-sum[l-1])%mod+mod)%mod; 
        res=(res+tmp*Sum(n/l,m/l)%mod)%mod;
    }
    return res;
}

int main(){
    primes();
    
    scanf("%lld%lld",&n,&m);
    if(n>m)swap(n,m);
    ll ans=0;
    for(int l=1,r;l<=n;l=r+1){
        r=min(n/(n/l),m/(m/l));
        ll tmp=(ll)(l+r)*(r-l+1)/2%mod;
        ans=(ans+tmp*F(n/l,m/l)%mod)%mod;
    }
    cout<<ans<<endl;
}

 

posted on 2019-07-08 14:19  zsben  阅读(197)  评论(0编辑  收藏  举报

导航