使用HF Trainer微调小模型

本文记录HugginngFace的Trainer各种常见用法。

SFTTrainer的一个最简单例子

HuggingFace的各种Trainer能大幅简化我们预训练和微调的工作量。能简化到什么程度?就拿我们个人用户最常会遇到的用监督学习微调语言模型任务为例,只需要定义一个SFTrainer,给定我们想要训练的模型和数据集,就可以直接运行微调任务。

'''
The simplest way to supervised-finetune a small LM by SFTTrainer

Environment:
    transformers==4.43.3
    datasets==2.20.0
    trl==0.9.6
'''
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import Dataset
from trl import SFTTrainer

model_path = 'Qwen/Qwen2-0.5B'
model = AutoModelForCausalLM.from_pretrained(model_path)
corpus = [
    {'prompt': 'calculate 24 x 99', 'completion': '24 x 99 = 2376'},
    {'prompt': 'Which number is greater, 70 or 68?', 'completion': '70 is greater than 68.'},
    {'prompt': 'How many vertices in a tetrahedron?', 'completion': 'A tetrahedron has 4 vertices.'},
]
dataset = Dataset.from_list(corpus)
trainer = SFTTrainer(model, train_dataset=dataset)  # 给定我们想要训练的模型和数据集
trainer.train()  # 就可以直接运行微调任务

使用Trainer不可或缺的参数只有两个:

  • model
  • train_dataset

是的,其他一切参数都是锦上添花,不可或缺的只有这两个。我们能够如此省心省力地去做微调,当然是因为SFTrainer帮我们做了很多事情,具体做了什么可以对比一下上面代码以和前文【一步一步微调小模型】中的完整代码。

要注意,我们的代码能如此简单很大程度上也是因为SFTTrainer帮我们预处理了数据集。它支持的数据集格式有两种,一种就是在上面代码里显示的那样,由promptcompletion组成的键值对:

{"prompt": "How are you", "completion": "I am fine, thank you."}
{"prompt": "What is the capital of France?", "completion": "It's Paris."}
{"prompt": "有志者事竟成", "completion": "Where there's a will, there's a way"}

这种格式就可以用于一问一答式的任务,包括只问答、翻译、摘要。另一种是更加灵活的多轮对话式的数据格式,每一个训练样本都以'messages'开头,然后式一列userassistant的对话记录:

{"messages": [{"role": "system", "content": "You are helpful"}, 
            {"role": "user", "content": "What's the capital of France?"}, 
            {"role": "assistant", "content": "It's Paris."}
            {"role": "user", "content": "and how about Japan?"}, 
            {"role": "assistant", "content": "It's Tokyo."}]}
{"messages": [{"role": "system", "content": "You are helpful"}, 
            {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, 
            {"role": "assistant", "content": "..."}]}

这两种数据格式已经足以应付几乎所有微调任务的需求。比如说,我要把使用数学内容的预料训练/微调Qwen-0.5B使它能回答和数学相关的问题,使用到的数据集是微软的orca-math-word-problems-200k,这个数据集由questionanswer组成

>>> from datasets import load_dataset
>>> dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
>>> print(dataset)
Dataset({
    features: ['question', 'answer'],
    num_rows: 200035
})

具体来说里面的数据长这个样子:

虽然数据集的键值对不是promptcompletion,但我们只需要修改一下名字就可以,就像下面的代码一样:

from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from trl import SFTTrainer

model_path = 'Qwen/Qwen2-0.5B'
data_path = 'microsoft/orca-math-word-problems-200k'
model = AutoModelForCausalLM.from_pretrained(model_path)
dataset = load_dataset(data_path, split='train')

dataset = dataset.rename_column('question', 'prompt')   # rename dataset features to "prompt" and "completion"
dataset = dataset.rename_column('answer', 'completion') # to fit in the SFTTrainer

trainer = SFTTrainer(model, train_dataset=dataset)
trainer.train()

SFTTrainer的一些常见用法

如果我们微调语言模型的任务使用到的数据非常奇特,无法用这两种数据格式来表示(虽然我觉得不太可能),那我们还能怎么办?这时候我们就只能把训练样本转化成语言模型一定会支持的格式,也就是字符串。具体来说就是编写一个函数,这个函数把训练样本作为输入,输出转化后的字符串,然后再定义训练器的时候把这个函数也传给训练器。以下代码种的formatting_prompts_func就把orca-math-word-problems-200k数据集种的每个训练样本都转化成了字符串

from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from trl import SFTTrainer

model_path = 'Qwen/Qwen2-0.5B'
data_path = 'microsoft/orca-math-word-problems-200k'
model = AutoModelForCausalLM.from_pretrained(model_path)
dataset = load_dataset(data_path, split='train')

def to_prompts_fn(batch) -> list[str]:
    '''take a batch of training samples, return a list of strings'''
    output_texts = []
    for i in range(len(batch['question'])):
        text = f"### Question: {batch['question'][i]}\n ### Answer: {batch['answer'][i]}"
        output_texts.append(text)
    return output_texts

trainer = SFTTrainer(model, train_dataset=dataset, formatting_func=to_prompts_fn)
trainer.train()

虽说使用SFTTrainer省心省力,但有时我们也希望更加深入地掌控训练/微调过程,比如调整学习率,调整batch的大小,每隔几步就打印一下训练过程中的一些指标、再测试数据上看看模型的效果、保存一下模型,诸如此类的。如果想要更多的控制,只需要给训练器传入更多参数,这些参数都可以统一写在SFTConfig里面,再传给训练器。下面的代码示例展示了常用的一些配置参数,包括如何调整batch大小、设置频繁清空GPU缓存等来避免CUDAOutofMemory,还给了一个测试数据集来监控模型在测试集上的效果。

'''
Common usage of SFTrainer and SFTConfig to finetune a small LM
'''
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from trl import SFTTrainer, SFTConfig

model_path = 'Qwen/Qwen2-0.5B'
data_path = 'microsoft/orca-math-word-problems-200k'
save_path = '/home/zrq96/checkpoints/qwen-0.5B-math-sft42'  # where checkpoints to output

model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
dataset = load_dataset(data_path, split='train')
dataset = dataset.rename_column('question', 'prompt')
dataset = dataset.rename_column('answer', 'completion')
splited = dataset.train_test_split(test_size=0.01)

sft_config = SFTConfig(
    output_dir=save_path,
    # max length of the total sequence
    max_seq_length=min(tokenizer.model_max_length, 2048), 
    per_device_train_batch_size=4, # by default 8
    learning_rate=1e-4, # by default 5e-5
    weight_decay=0.1, # by default 0.0
    num_train_epochs=2, # by default 3
    logging_steps=50, # by default 500
    save_steps=100, # by default 500
    torch_empty_cache_steps=10,  # empty GPU cache every 10 steps
    eval_strategy='steps', # by default 'no'
    eval_steps=100, 
)

trainer = SFTTrainer(
    model,
    args=sft_config,
    train_dataset=splited['train'],
    eval_dataset=splited['test'],
)
trainer.train()

使用Trainer

使用SFTTrainer能这么省力,还是因为它帮我们做了很多事情,这其中最主要的事情就是帮我们处理好数据集。可以说,在大模型领域的编程里,甚至在当前的人工智能领域里数据处理占了一半以上的工作量。SFTTrainerTrainer的一个子类,而Trainer是HuggingFace所有训练器的父类,我们可以使用Trainer来做SFTTrainer能做的一切事情。我们下面演示一下怎样使用更加通用的Trainer来做微调,顺便展示一下SFTTrainer帮我们做了哪些数据处理工作。理解了这个过程,我们以后甚至可以定制自己的训练器。根据Trainer的文档,它的用法跟SFTTRainer类似(倒反天罡了属于是...),也是传入待训练/微调的模型和数据集,以及一些可能的训练参数:

from transformers import AutoModelForCausalLM, Trainer, TrainingArguments

model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen2-0.5B')
dataset = ...
training_args = TrainingArguments(output_dir='./save_path')
trainer = Trainer(model, train_dataset=dataset, args=training_args)
trainer.train()

SFTTrainer最大的不同是对数据格式的支持。SFTTrainer可以接受一些直观的数据格式,但Trainer的数据集要严格按照model.forward函数所能接受的输入来设计,也就说Trainer会把数据集里的数据样本直接塞给模型,那么我们的数据集里的样本就要是能直接传给模型的。因此,想要对数据进行处理,我们就得研究一下我们的待训练模型究竟能接收怎样的输入数据。在我们的例子中,我们的模型是Qwen2ForCausalLM,其forward函数的签名是

def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]: ...

其中,input_ids: torch.LongTensor是必须有的。因为我们要做训练/微调,所以labels: Optional[torch.LongTensor]也是必须的而非optional了。所以我们的数据集应当是含input_idslabels的样本,而且这两个特征的数据类型都是torch.LongTensor

>>> from datasets import load_dataset
>>> dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
>>> def preprocess_dataset(x: dict) -> dict:
...     # to be implemented
...     ...
>>> 
>>> new_ds = dataset.map(preprocess_dataset)
>>> print(new_ds)
Dataset({
    features: ['input_ids', 'labels'],
    num_rows: 200035
})

我们会使用一个preprocess_dataset函数把原始数据集种的每一个样本转化成model能给接受的样本。要做的也只是把question和answer的文本内容拼接在一起,然后tokenize一下,有需要的话就pad或者truncate,这就搞定了input_ids。而CausalLM的forward要做的事情都是预测下一个词,所以labels就是input_ids左移一个token的位置而已。然而,因为左移这一步model自己会做,所以我们的labels就只是复制一份input_ids而已:

左移labels这一步model自己会做

因此,我们的预处理函数就仅仅是把文本变成input_ids,然后复制一份作为labels:

def preprocess_data(x: dict) -> dict:
    '''
    take a training sample and return a preprocessed sample 
    with the keys that the model expects, in our case:
        - input_ids: the tokenized input
        - labels: the right-shifted tokenized input
    and optionally:
        - attention_mask: a mask indicating which tokens should be attended to
        - position_ids: the position of each token in the input
        - ...
    '''
    text = f"### Question: {x['question']}\n ### Answer: {x['answer']}"
    tokenized = tokenizer(text, return_tensors='pt', 
                          truncation=True, 
                          padding='max_length', 
                          max_length=1024)  # 量力而行,可以2014甚至4096,或者使用 data collator
    return {
        'input_ids': tokenized['input_ids'][0],
        'labels': tokenized['input_ids'][0].clone(),
    }

将所有代码整合起来,下面就是使用Trainer对模型做微调的完整代码:

'''
Supervised-FineTuning a small LM by the vanilla Trainer
'''
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from transformers import TrainingArguments, Trainer

model_path = 'Qwen/Qwen2-0.5B'
data_path = 'microsoft/orca-math-word-problems-200k'
save_path = '/home/ricky/checkpoints/qwen-0.5B-math-sft42'

model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
dataset = load_dataset(data_path, split='train')

def preprocess_data(x: dict) -> dict:
    '''
    take a training sample and return a preprocessed sample 
    with the keys that the model expects, in our case:
        - input_ids: the tokenized input
        - labels: the right-shifted tokenized input
    and optionally:
        - attention_mask: a mask indicating which tokens should be attended to
        - position_ids: the position of each token in the input
        - ...
    '''
    text = f"### Question: {x['question']}\n ### Answer: {x['answer']}"
    tokenized = tokenizer(text, return_tensors='pt', 
                          truncation=True, 
                          padding='max_length', 
                          max_length=1024)
    return {
        'input_ids': tokenized['input_ids'][0],
        'labels': tokenized['input_ids'][0].clone(),
    }

new_ds = dataset.map(
    function=preprocess_data,  # map all samples with this function
    num_proc=4                 # use 4 processes to speed up
)
splited = new_ds.train_test_split(test_size=0.01)

training_args = TrainingArguments(
    output_dir=save_path,
    per_device_train_batch_size=2,
    per_device_eval_batch_size=2,
    torch_empty_cache_steps=2,
    num_train_epochs=2, # by default 3
    logging_steps=50, # by default 500
    save_steps=100,
    eval_strategy='steps', # by default 'no'
    eval_steps=100, 
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=splited['train'],
    eval_dataset=splited['test'],
)

trainer.train()
posted @ 2024-08-25 10:43  zrq96  阅读(45)  评论(0编辑  收藏  举报