kafka 的 createDirectStream

kafka api中给出2类直接获取流的接口:createStream和createDirectStream。

createStream比较简单,只需topic、groupid、zookeeper就可以直接获取流,brokers和offset都是黑盒无需进行控制,但在项目中往往不受控。以下是部分源码:

/**
   * Create an input stream that pulls messages from Kafka Brokers.
   * @param ssc       StreamingContext object
   * @param zkQuorum  Zookeeper quorum (hostname:port,hostname:port,..)
   * @param groupId   The group id for this consumer
   * @param topics    Map of (topic_name -> numPartitions) to consume. Each partition is consumed
   *                  in its own thread
   * @param storageLevel  Storage level to use for storing the received objects
   *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
   * @return DStream of (Kafka message key, Kafka message value)
   */
  def createStream(
      ssc: StreamingContext,
      zkQuorum: String,
      groupId: String,
      topics: Map[String, Int],
      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
    ): ReceiverInputDStream[(String, String)] = {
    val kafkaParams = Map[String, String](
      "zookeeper.connect" -> zkQuorum, "group.id" -> groupId,
      "zookeeper.connection.timeout.ms" -> "10000")
    createStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, topics, storageLevel)
  }
KafkaUtils.createStream

createDirectStream直接去操作kafka,需要自己手动保存offset,方法的注释写的还是很明白的,以下是部分源码:

/**
   * Create an input stream that directly pulls messages from Kafka Brokers
   * without using any receiver. This stream can guarantee that each message
   * from Kafka is included in transformations exactly once (see points below).
   *
   * Points to note:
   *  - No receivers: This stream does not use any receiver. It directly queries Kafka
   *  - Offsets: This does not use Zookeeper to store offsets. The consumed offsets are tracked
   *    by the stream itself. For interoperability with Kafka monitoring tools that depend on
   *    Zookeeper, you have to update Kafka/Zookeeper yourself from the streaming application.
   *    You can access the offsets used in each batch from the generated RDDs (see
   *    [[org.apache.spark.streaming.kafka.HasOffsetRanges]]).
   *  - Failure Recovery: To recover from driver failures, you have to enable checkpointing
   *    in the [[StreamingContext]]. The information on consumed offset can be
   *    recovered from the checkpoint. See the programming guide for details (constraints, etc.).
   *  - End-to-end semantics: This stream ensures that every records is effectively received and
   *    transformed exactly once, but gives no guarantees on whether the transformed data are
   *    outputted exactly once. For end-to-end exactly-once semantics, you have to either ensure
   *    that the output operation is idempotent, or use transactions to output records atomically.
   *    See the programming guide for more details.
   *
   * @param ssc StreamingContext object
   * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">
   *    configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers"
   *    to be set with Kafka broker(s) (NOT zookeeper servers) specified in
   *    host1:port1,host2:port2 form.
   * @param fromOffsets Per-topic/partition Kafka offsets defining the (inclusive)
   *    starting point of the stream
   * @param messageHandler Function for translating each message and metadata into the desired type
   * @tparam K type of Kafka message key
   * @tparam V type of Kafka message value
   * @tparam KD type of Kafka message key decoder
   * @tparam VD type of Kafka message value decoder
   * @tparam R type returned by messageHandler
   * @return DStream of R
   */
  def createDirectStream[
    K: ClassTag,
    V: ClassTag,
    KD <: Decoder[K]: ClassTag,
    VD <: Decoder[V]: ClassTag,
    R: ClassTag] (
      ssc: StreamingContext,
      kafkaParams: Map[String, String],
      fromOffsets: Map[TopicAndPartition, Long],
      messageHandler: MessageAndMetadata[K, V] => R
  ): InputDStream[R] = {
    val cleanedHandler = ssc.sc.clean(messageHandler)
    new DirectKafkaInputDStream[K, V, KD, VD, R](
      ssc, kafkaParams, fromOffsets, cleanedHandler)
  }
KafkaUtils.createDirectStream

/**
   * Create an input stream that directly pulls messages from Kafka Brokers
   * without using any receiver. This stream can guarantee that each message
   * from Kafka is included in transformations exactly once (see points below).
   *
   * Points to note:
   *  - No receivers: This stream does not use any receiver. It directly queries Kafka
   *  - Offsets: This does not use Zookeeper to store offsets. The consumed offsets are tracked
   *    by the stream itself. For interoperability with Kafka monitoring tools that depend on
   *    Zookeeper, you have to update Kafka/Zookeeper yourself from the streaming application.
   *    You can access the offsets used in each batch from the generated RDDs (see
   *    [[org.apache.spark.streaming.kafka.HasOffsetRanges]]).
   *  - Failure Recovery: To recover from driver failures, you have to enable checkpointing
   *    in the [[StreamingContext]]. The information on consumed offset can be
   *    recovered from the checkpoint. See the programming guide for details (constraints, etc.).
   *  - End-to-end semantics: This stream ensures that every records is effectively received and
   *    transformed exactly once, but gives no guarantees on whether the transformed data are
   *    outputted exactly once. For end-to-end exactly-once semantics, you have to either ensure
   *    that the output operation is idempotent, or use transactions to output records atomically.
   *    See the programming guide for more details.
   *
   * @param ssc StreamingContext object
   * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">
   *   configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers"
   *   to be set with Kafka broker(s) (NOT zookeeper servers), specified in
   *   host1:port1,host2:port2 form.
   *   If not starting from a checkpoint, "auto.offset.reset" may be set to "largest" or "smallest"
   *   to determine where the stream starts (defaults to "largest")
   * @param topics Names of the topics to consume
   * @tparam K type of Kafka message key
   * @tparam V type of Kafka message value
   * @tparam KD type of Kafka message key decoder
   * @tparam VD type of Kafka message value decoder
   * @return DStream of (Kafka message key, Kafka message value)
   */
  def createDirectStream[
    K: ClassTag,
    V: ClassTag,
    KD <: Decoder[K]: ClassTag,
    VD <: Decoder[V]: ClassTag] (
      ssc: StreamingContext,
      kafkaParams: Map[String, String],
      topics: Set[String]
  ): InputDStream[(K, V)] = {
    val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)
    val kc = new KafkaCluster(kafkaParams)
    val fromOffsets = getFromOffsets(kc, kafkaParams, topics)
    new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](
      ssc, kafkaParams, fromOffsets, messageHandler)
  }
KafkaUtils.createDirectStream

项目中需要的是手动去控制这个偏移量,由此可以看到多了2个参数:fromOffsets: Map[TopicAndPartition, Long] 和 messageHandler: MessageAndMetadata[K, V] => R。

获取fromOffsets的思路应该就是:

1. 连接到zk

2. 获取topic和partitions

3. 遍历topic的partitions,读取每个partitions的offset(存在zk中的地址为:/consumers/[group id]/offsets/[topic]/[0 ... N])

4. 有可能读取的路径为空,那么得去取leader中的offset

因此,对应代码:(可以参考这些源码:kafka.utils.ZkUtils,org.apache.spark.streaming.kafka.KafkaUtils,kafka.tools.GetOffsetShell,及其对应的调用类)

private def getOffset = {
    val fromOffset: mutable.Map[TopicAndPartition, Long] = mutable.Map()

    val (zkClient, zkConnection) = ZkUtils.createZkClientAndConnection(kafkaZkQuorum, kafkaZkSessionTimeout, kafkaZkSessionTimeout)
    val zkUtil = new ZkUtils(zkClient, zkConnection, false)

    zkUtil.getPartitionsForTopics(kafkaTopic.split(",").toSeq)
      .foreach({ topic2Partition =>
        val topic = topic2Partition._1
        val partitions = topic2Partition._2
        val topicDirs = new ZKGroupTopicDirs(groupId, topic)

        partitions.foreach(partition => {
          val zkPath = s"${topicDirs.consumerOffsetDir}/$partition"
          zkUtil.makeSurePersistentPathExists(zkPath)

          val untilOffset = zkUtil.zkClient.readData[String](zkPath)

          val tp = TopicAndPartition(topic, partition)
          val offset = {
            if (null == untilOffset)
              getLatestLeaderOffsets(tp, zkUtil)
            else untilOffset.toLong
          }
          fromOffset += (tp -> offset)
        }
        )
      })
    zkUtil.close()
    fromOffset.toMap
  }
getOffset

获取messageHandler,就跟其第二个构造函数一样即可:

messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)
messageHandler

接着就是getLatestLeaderOffsets:

private def getLatestLeaderOffsets(tp: TopicAndPartition, zkUtil: ZkUtils): Long = {
    try {
      val brokerId = zkUtil.getLeaderForPartition(tp.topic, tp.partition).get
      val brokerInfoString = zkUtil.readDataMaybeNull(s"${ZkUtils.BrokerIdsPath}/$brokerId")._1.get
      val brokerInfo = Json.parseFull(brokerInfoString).get.asInstanceOf[Map[String, Any]]

      val host = brokerInfo("host").asInstanceOf[String]
      val port = brokerInfo("port").asInstanceOf[Int]

      val consumer = new SimpleConsumer(host, port, 10000, 100000, "getLatestLeaderOffsets")
      val request = OffsetRequest(Map(tp -> PartitionOffsetRequestInfo(OffsetRequest.LatestTime, 1)))
      val offsets = consumer.getOffsetsBefore(request).partitionErrorAndOffsets(tp).offsets

      offsets.head
    } catch {
      case _ => throw new Exception("获取最新offset异常:" + TopicAndPartition)
    }
  }
getLatestLeaderOffsets

 最后就是调用的方式了:

KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc,
      kafkaParams, getOffset, (mmd: MessageAndMetadata[String, String]) => (mmd.key, mmd.message))
KafkaUtils.createDirectStream

由于要从灾难中还原,做到7*24,需要设置checkpoint,业务逻辑需要包含在checkpoint的方法里,代码如下:

def main(args: Array[String]): Unit = {

    val run = gatewayIsEnable || urlAnalysIsEnable

    if (run) {

      val ssc = StreamingContext.getOrCreate(checkpointDir, createStreamingContext _)

      ssc.start()
      ssc.awaitTermination()
    }
  }

  def createStreamingContext() = {
    val duration = SysConfig.duration(2)

    val sparkConf = new SparkConf().setAppName("cmhi")
    val ssc = new StreamingContext(sparkConf, Seconds(duration))

    ssc.checkpoint(checkpointDir)

    Osgi.init(ssc, debug)
    
    ssc
  }
main

 

posted @ 2017-10-25 15:14  张q  阅读(999)  评论(0编辑  收藏  举报