2020.02.15

1.数据导入

从文件中导入数据,并转化为 DataFrame。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import org.apache.spark.ml.feature.PCA
import org.apache.spark.sql.Row
import org.apache.spark.ml.linalg.{Vector,Vectors}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.{Pipeline,PipelineModel}
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer,HashingTF, Tokenizer}
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.classification.LogisticRegressionModel
import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression}
import org.apache.spark.sql.functions;
scala> import spark.implicits._
import spark.implicits._
scala> case class Adult(features: org.apache.spark.ml.linalg.Vector, label: String) <br>defined class Adult
scala> val df=sc.textFile("adult.data.txt").map(_.split(",")).map(p=>Adult(Vectors.dense(p(0).toDouble,p(2).toDouble,p(4).toDouble,p(10).toDouble,p(11).toDouble,p(12).toDouble),p(14).toString())).toDF()<br>df:org.apache.spark.sql.DataFrame = [features: vector, label: string]
scala> val test = sc.textFile("adult.test.txt").map(_.split(",")).map(p=>Adult(Vectors.dense(p(0).toDouble,p(2).toDouble,p(4).toDouble, p(10).toDouble, p(11).toDouble, p(12).toDouble), p(14).toString())).toDF() <br>test:org.apache.spark.sql.DataFrame = [features: vector, label: string]

2.进行主成分分析(PCA)

 对 6 个连续型的数值型变量进行主成分分析。PCA(主成分分析)是通过正交变换把一 组相关变量的观测值转化成一组线性无关的变量值,即主成分的一种方法。PCA 通过使用 主成分把特征向量投影到低维空间,实现对特征向量的降维。请通过 setK()方法将主成分数 量设置为 3,把连续型的特征向量转化成一个 3 维的主成分。

1
2
3
4
5
scala> val pca = new PCA().setInputCol("features").setOutputCol("pcaFeatures").setK(3).fit(df)
scala> val result = pca.transform(df)
scala> val testdata = pca.transform(test)
scala> result.show(false)
scala> testdata.show(false)

3.训练分类模型并预测居民收入

在主成分分析的基础上,采用逻辑斯蒂回归,或者决策树模型预测居民收入是否超过 50K;对 Test 数据集进行验证。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
scala> val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(result)
scala> labelIndexer.labels.foreach(println)
scala> val featureIndexer = new VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures").fit(result)
scala> println(featureIndexer.numFeatures)
scala> val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer. labels)
scala> val lr = new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter( 100)
scala> val lrPipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, lr, labelConverter))
scala> val lrPipelineModel = lrPipeline.fit(result)
scala> val lrModel = lrPipelineModel.stages(2).asInstanceOf[LogisticRegressionModel]
scala> println("Coefficients: " + lrModel.coefficientMatrix+"Intercept: "+lrModel.interceptVector+"numClasses: "+lrModel.numClasses+"numFeatures: "+lrModel.numFeatures)
scala> val lrPredictions = lrPipelineModel.transform(testdata)
scala> val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
scala> val lrAccuracy = evaluator.evaluate(lrPredictions)
scala> println("Test Error = " + (1.0 - lrAccuracy))

4.超参数调优

利用 CrossValidator 确定最优的参数,包括最优主成分 PCA 的维数、分类器自身的参数 等。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
scala> val pca = new PCA().setInputCol("features").setOutputCol("pcaFeatures")
scala> val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df)
scala> val featureIndexer = new VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures")
scala> val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.l abels)
scala> val lr = new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(1 00)
scala> val lrPipeline = new Pipeline().setStages(Array(pca, labelIndexer, featureIndexer, lr, labelConverter))
scala> val paramGrid = new ParamGridBuilder().addGrid(pca.k, Array(1,2,3,4,5,6)).addGrid(lr.elasticNetParam, Array(0.2,0.8)).addGrid(lr.regParam, Array(0.01, 0.1, 0.5)).build()
scala> val cv = new CrossValidator().setEstimator(lrPipeline).setEvaluator(new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")).se tEstimatorParamMaps(paramGrid).setNumFolds(3)
scala> val cvModel = cv.fit(df)
scala> val lrPredictions=cvModel.transform(test)
scala> val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
scala> val lrAccuracy = evaluator.evaluate(lrPredictions)
scala> println("准确率为"+lrAccuracy)
scala> val bestModel= cvModel.bestModel.asInstanceOf[PipelineModel]
scala> val lrModel = bestModel.stages(3).asInstanceOf[LogisticRegressionModel]
scala> println("Coefficients: " + lrModel.coefficientMatrix + "Intercept: "+lrModel.interceptVector+ "numClasses: "+lrModel.numClasses+"numFeatures: "+lrModel.numFeatures)
scala> val pcaModel = bestModel.stages(0).asInstanceOf[PCAModel]
scala> println("Primary Component: " + pcaModel.pc)
posted @ 2020-02-15 12:39  ZQL2017  阅读(454)  评论(0编辑  收藏  举报