第七章随笔

第一部分——飞机客户数据分析预测

代码一:读取数据

import pandas as pd
datafile = 'D:/JupyterLab-Portable-3.1.0-3.9/新建文件夹/air_data.csv'
resultfile = 'D:/python123/explore.csv'

data = pd.read_csv(datafile,encoding='utf-8')
explore = data.describe(percentiles=[],include='all').T
explore['null'] = len(data)-explore['count']

explore = explore[['null','max','min']]
explore.columns = [u'空值数',u'非空值数',u'最小值']

'''
这里只选取部分探索结果。
describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、
freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值)
'''

explore.to_csv(resultfile)

代码二:分析数据并绘制基本图像

from datetime import datetime

import matplotlib.pyplot as plt

ffp = data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d'))
ffp_year = ffp.map(lambda x : x.year)
fig = plt.figure(figsize=(8,5))
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
plt.hist(ffp_year,bins='auto',color='#0504aa')
plt.xlabel('年份')
plt.ylabel('入会人数')
plt.title('各年份会员人会人数3125')
plt.show()
plt.close()

male = pd.value_counts(data['GENDER'])['男']
female = pd.value_counts(data['GENDER'])['女']
fig = plt.figure(figsize=(7,4))
plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%')
plt.title('会员性别比例3125')
plt.show()
plt.close()

lv_four = pd.value_counts(data['FFP_TIER'])[4]
lv_five = pd.value_counts(data['FFP_TIER'])[5]
lv_six = pd.value_counts(data['FFP_TIER'])[6]
fig = plt.figure(figsize=(8,5))
plt.bar(x=range(3),height=[lv_four,lv_five,lv_six],width=0.4,alpha=0.8,color='skyblue')
plt.xticks([index for index in range(3)],['4','5','6'])
plt.xlabel('会员等级')
plt.ylabel('会员人数')
plt.title('会员各级别人数3125')
plt.show()
plt.close()

age = data['AGE'].dropna()
age = age.astype('int64')
fig = plt.figure(figsize=(5,10))
plt.boxplot(age,
patch_artist=True,
labels=['会员年龄'],
boxprops={'facecolor':'lightblue'})
plt.title('会员年龄分布箱线图3125')
plt.grid(axis='y')
plt.show()
plt.close()

代码三:客户乘机数据分析箱型图

lte = data['LAST_TO_END']
fc = data['FLIGHT_COUNT']
sks = data['SEG_KM_SUM']
fig = plt.figure(figsize=(5,8))
plt.boxplot(lte,
patch_artist=True,
labels=['时长'],
boxprops={'facecolor':'lightblue'})
plt.title('会员最后乘机至结束时长分布箱线图3125')
plt.grid(axis='y')
plt.show()
plt.close()

fig = plt.figure(figsize=(5,8))
plt.boxplot(fc,
patch_artist=True,
labels=['飞行次数'],
boxprops={'facecolor':'lightblue'})
plt.title('会员飞行次数分布箱线图3125')
plt.grid(axis='y')
plt.show()
plt.close()

fig = plt.figure(figsize=(5,10))
plt.boxplot(fc,
patch_artist=True,
labels=['总飞行公里数'],
boxprops={'facecolor':'lightblue'})
plt.title('客户总飞行公里数箱线图3125')
plt.grid(axis='y')
plt.show()
plt.close()

代码四:会员积分数据分析直方图

ec = data['EXCHANGE_COUNT']
fig = plt.figure(figsize=(8,5))
plt.hist(ec,bins=5,color='#0504aa')
plt.xlabel('总换次数')
plt.ylabel('会员人数')
plt.title('会员兑换积分次数分布直方图3125')
plt.show()
plt.close()

ps = data['Points_Sum']
fig = plt.figure(figsize=(5,8))
plt.boxplot(ps,
patch_artist=True,
labels=['总累计积分'],
boxprops={'facecolor':'lightblue'})
plt.title('客户总累计积分箱线图3125')
plt.grid(axis='y')
plt.show()
plt.close()

 

代码五:相关矩阵及热力图

data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']]
age1 = data['AGE'].fillna(0)
data_corr['AGE'] = age1.astype('int64')
data_corr['ffp_year'] = ffp_year
dt_corr = data_corr.corr(method='pearson')
print('相关性矩阵为:\n',dt_corr)

import seaborn as sns
plt.subplots(figsize=(10,10))
sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues')
plt.title('3125')
plt.show()
plt.close

posted @   闪电干饭狼  阅读(70)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
点击右上角即可分享
微信分享提示