MySQL的经典SQL优化13例(更新到2024年5月21日)

  下列优化的SQL案例,区别于平常加SQL索引的方法优化,大部分都是通过改写SQL语句方法优化,都是日常优化线上慢SQL的实际案例,有比较好的代表性(思路和方法),也是对自己这些年来做SQL优化的总结,对后面优化SQL有很好的提示和借鉴,案例会持续更新中。

 说明:

     最近优化慢SQL,执行计划错误和OR条件查询优化实战经验,提供优化SQL思路和方法:

      1,利用exists来优化SQL(利用exists减少回表查询次数和确定驱动表)

      2,OR语句优化(OR条件,字段有索引,无法使用索引的) 

案例1:

SELECT sum( CASE WHEN ols.check_status NOT IN ( 2, 3, 4 ) THEN 1 WHEN ols.check_status IS NULL THEN 1 END ) AS 
lesson_num,
sum( ols.check_status = 1 ) AS attend_num FROM ol_live_student_time_chapter_list olstcl LEFT JOIN
ol_live_student ols
ON olstcl.live_student_id = ols.id inner JOIN ol_user u ON u.id = olstcl.user_id WHERE olstcl.class_course_type = '2' AND olstcl.attend_status <> 4 AND olstcl.start_time >= 1621526400 AND olstcl.start_time < 1621612799 AND u.is_test_user = '0' AND
counselor_id = '796' AND u.pay_status = '0' AND u.type = '1' AND u.STATUS = '1';

   执行超过2.2秒,执行计划如下,从执行计划看:返回的rows也很少。key里用到了索引,按理说这个SQL是最优的SQL,没有优化的空间

   但实际查看ol_user表,表有430万条数据,核心还是查询ol_user表的数据,如果能去掉ol_user表查询,就更好,如果不能去掉,能有其他优化方法

  通过仔细分析3个表,各个条件查询查出的数据:     

select count(*) ol_live_student_time_chapter_list olstcl where olstcl.start_time>= 1621526400 AND 
olstcl.start_time< 1621612799 and olstcl.class_course_type = '2' AND olstcl.attend_status <> 4

  发现ol_live_student_time_chapter_list 查询,这个时间查出只有8000多条。而查询oL_user表查询:  

select count(*) from ol_user u where u.is_test_user = '0' AND counselor_id = '796' AND u.pay_status = '0'
AND u.type = '1' AND u.STATUS = '1'

   查出300多条,但仔细计划显示:Using intersect(pay_status_user,counselor_id,type,is_test_user); Using where; Using index。 的确用很多索引,

  这样看,表面看执行计划没问题,但实际看一下,这个ol_user表查询,其实只是一个条件,ol_user没有字段在select查出显示,从某种意义上讲,只需要查出符合条件的就可以,如果满足其中

一个就返回效率是否更高,不需要每个条件都查完,这样我们完全可以用EXISTS 替换inner join 来提高查询效率,SQL修改如下:

SELECT sum( CASE WHEN ols.check_status NOT IN ( 2, 3, 4 ) THEN 1 WHEN ols.check_status IS NULL THEN 1 END ) AS
lesson_num, sum( ols.check_status = 1 ) AS attend_num FROM ol_live_student_time_chapter_list olstcl LEFT JOIN
ol_live_student ols ON olstcl.live_student_id = ols.id WHERE olstcl.class_course_type = '2' AND
olstcl.attend_status <> 4 AND olstcl.start_time >= 1621526400 AND olstcl.start_time < 1621612799 and
EXISTS (select 1 from ol_user u where u.is_test_user = '0' AND u.counselor_id
= '796' AND u.pay_status = '0' AND u.type = '1' AND u.STATUS = '1' and u.id = olstcl.user_id) ;

  使用优化的SQL,时间只有0.9秒左右

  优化原理:  利用 EXISTS 来替换 inner join,减少查询循环回表次数,提高效率。

 

案例2:

select count(distinct u.id) from ol_user u left join ol_user_related_info uri on u.id = uri.user_id where 
u.type=1 and u.status =1 and u.pay_status=0 and uri.recovery_time_no_pay>=1622649600 and
uri.recovery_time_no_pay<1622736000 and u.counselor_id in (403);

   执行超过1.3秒,执行计划如下: 

  从这里看:查出ol_user的u.id,distinct汇总,而ol_user_related_info 是left join,仔细看逻辑,虽然是left join,但有uri.recovery_time_no_pay条件,就这个left join 可以改成inner join

 可以改成: 

select count(distinct uri.user_id) from ol_user u inner join ol_user_related_info uri on u.id = uri.user_id 
where u.type=1 and u.status =1and u.pay_status=0 and uri.recovery_time_no_pay>=1622649600 and
uri.recovery_time_no_pay<1622736000 and u.counselor_id in (403);

  修改完,2者的执行效率,查不多,改了也没优化,如上面的优化,我们知道ol_user表的数据量太大,要减少回表的查询,

该SQL就可以改成exists查询,如下:

select count(distinct uri.user_id) from  ol_user_related_info uri   where   uri.recovery_time_no_pay>=1622649600 
and uri.recovery_time_no_pay<1622736000 and exists (select 1 from ol_user u where u.id = uri.user_id and
u.type=1 and u.status =1 and u.pay_status=0 and u.counselor_id in (403) )

   改成这样,SQL执行只需0.6秒左右,未加索引,改写SQL,left join修改成 inner join,再改成exists查询

 

案例3

SELECT f.flow_type,count(1) as num FROM `ol_admin_flow` `f` LEFT JOIN `ol_admin_flow_node` `n` ON `f`.`flowid`=
`n`.`flowid` WHERE( `n`.`adminid` = 7417 OR `f`.`post_adminid` = 7417 ) GROUP BY `f`.`flow_type`;

  执行超过2.5秒,post_adminid加索引,SQL也用不到索引,将or改写成 union all写法

select flow_type,sum(num) num from (SELECT f.flow_type,1 num FROM ol_admin_flow f LEFT JOIN ol_admin_flow_node n 
ON f.flowid=n.flowid WHERE f.post_adminid = 7418 union all SELECT f.flow_type,1 num FROM ol_admin_flow f LEFT
JOIN ol_admin_flow_node n ON f.flowid=n.flowid WHERE n.adminid = 7418 ) a group by flow_type

   改成这样写法后。SQL效率大幅提升,查询只需0.3秒

案例4

SELECT  au.GROUP group_id,sum(IF  (o.STATUS = 3  AND o.attach_pay_time BETWEEN 1625068800  AND 1627747199 AND
o.rebate_time BETWEEN 1625068800 AND 1627747199, 0, oap.price ) ) real_renewal_money, sum(IF ( o.STATUS = 3
AND o.attach_pay_time BETWEEN 1625068800 AND 1627747199 AND o.rebate_time BETWEEN 1625068800 AND
1627747199, 0, oap.order_count ) ) renewal_num FROM `ol_order_attach_pay` `oap` INNER JOIN
`ol_order` `o` IGNORE INDEX ( idx_pay_time_type ) ON `o`.`order_number` = `oap`.`order_number` AND `o`.`status`
IN ( 1, 3 ) AND ( `o`.`attach_pay_time` >= 1625068800 AND `o`.`attach_pay_time` < 1627055999 ) AND
`o`.`package_course_type` = 1 INNER JOIN `online`.`ol_admin_user` `au` ON `oap`.`adminid` = `au`.`id` WHERE `oap`.`status` = 1 AND `oap`.`adminid` IN ( 728, 818, 870, 1497, 2019, 2021, 2465, 2557, 2679, 3228, 3231, 3916, 3419, 3423, 3412, 3417, 3500, 4165,
477, 4163, 1030, 562 ) GROUP BY `au`.`group` LIMIT 100;

  该SQL线上执行需要18秒以上,执行计划如下:

   从执行计划看,慢的地方在查询ol_order的索引,有76万条。表中有以下索引:

    KEY `attach_pay_time` (`attach_pay_time`)    KEY `package_course_type` (`package_course_type`),表中有20多个索引,太多,真不想再建索引。但不加索引无法优化,用 force index 索引优化效果又不太好,一开始研发建立复合索引:KEY `idx_pay_time_type` (`attach_pay_time`,`package_course_type`), 按理应该优化,但实际优化效果不好,后续将复合索引改成:

    KEY `idx_pay_time_type` (`package_course_type`,`attach_pay_time`),

   加好后,执行计划如下,查询在0.5秒:   

案例5

   利用id主键来排序优化

select  q.q_id, q.q_title from   bbs_question q where     q.app_id = 'xtep'  and q.delete_flag = 0   and 
( q.ban_flag is null or q.ban_flag = 0 )
and ( q.q_title like '%圆领%' or q.q_context like '%圆领%' ) order by q.create_time desc limit 10

  优化说明:优化前因有OR和like查询,不好再建索引优化,查询需要2秒以上,因创建时间和主键自增长二者排序数据一致,order by q.create_time desc 改成 order by q.q_id desc ,SQL中create_time排序改成利用主键排序,优化后只需0.4秒。  

案例6

   利用全文索引优化

update sys_org_shop set path = REPLACE(path, '1806874642_1,6006991214_3,4006896323_4,4006910831_4,6006945801_6,
5007352247_5,
', '1806874642_1,6006991214_3,4006896323_4,4006910831_4,6006945737_6,5007352247_5,'),operation='
1658136067459_method:SysOrgEnterprise.editOrgType' where path like '%1806874642_1,6006991214_3,4006896323_4,
4006910831_4,6006945801_6,5007352247_5,%
' and app_id='dep'

    该语句执行平均1.9秒,查询更新path字段,在path建索引,效果不大,而且必须使用前后的%,效率很低,只能在path建立全文索引,运MySQL的版本是

5.6的,MySQL5.6全文索引不支持中文,但这个字段只支持数字和“,”。对优化该SQL足够,like模糊查询字段建立全文索引优化

alter table sys_org_shop add FULLTEXT idx_path(path)

  优化后SQL如下;注意AGAINST的挂号里面的有一对"",否则全文查询的数据不对

update sys_org_shop set path = REPLACE(path, '1806874642_1,6006991214_3,4006896323_4,4006910831_4,6006945801_6,
5007352247_5,
', '1806874642_1,6006991214_3,4006896323_4,
4006910831_4,6006945737_6,5007352247_5,
'),
operation='1658136067459_method:SysOrgEnterprise.editOrgType' where
MATCH(`path`) AGAINST ('"1806874642_1,6006991214_3,4006896323_4,4006910831_4,6006945801_6,5007352247_5,"')
and app_id='dep'

 案例7

   利用普通索引优化like模糊查询

select t.id,t.title,t.text_info,t.create_user,t.create_time,t.app_id,t.flag,u.name from sys_img_text t,sys_user
u where t.create_user=u.sys_user_id and t.app_id = '3S' and t.title like '%27C01010%' and t.flag = 1 order
by t.create_time desc limit 5

  该SQL执行计划:

   

   查询先走的create_time排序索引,再查询数据,执行起来要38秒+,很慢,可以在title字段建全文索引查询,但MySQL版本是5.6,

不支持中文,建了如查询中文的就查不出来,这里有app_id 有索引,可以用这个索引做一下过滤,过滤后在title字段模糊查询会快很多。

修改SQL 如下:    

select t.id,t.title,t.text_info,t.create_user,t.create_time,t.app_id,t.flag,u.name from sys_img_text t 
force index(idx_app),sys_user u where t.create_user=u.sys_user_id and t.app_id = '3S' and t.title
like '%27C01010%' and t.flag = 1 orderby t.create_time desc limit 5

    查询先过滤一层数据,在无全文索引情况下,增加force index(idx_app)强制索引查询,提高高查询效率,执行只需要0.011秒,

  有几千倍的性能提升。

 

 案例8

    SQL在MySQL5.5执行正常,到了MySQL5.6和5.7执行一直很慢,执行查不出结果:(2023年3月31日补充案例)

SELECT
    count( DISTINCT t1.seafarer_id ) AS hisNum,
    count( DISTINCT t2.seafarer_id ) AS jyNum 
FROM
    cy_cy_qf t1
    LEFT JOIN (
    SELECT
        t3.comp_id,
        t3.seafarer_id,
        t4.const_key,
        t4.const_value 
    FROM
        gt_cp t4
        LEFT JOIN cy_cy_mf t3 ON t3.comp_id = t4.comp_id 
        AND t3.memo_kind_id = t4.const_key 
    WHERE
        t3.comp_id = 'COMP2967' 
        AND t3.delete_flag = '0' 
    ) t2 ON t1.comp_id = t2.comp_id 
    AND t1.seafarer_id = t2.seafarer_id 
    AND t2.const_value = '就医/看诊' 
WHERE
    t1.delete_flag = '0' 
    AND t1.comp_id = 'COMP2967'

   SQL的执行计划

   从这看出gt_cp t4,这个表扫描的行数很多,通过t1.seafarer_id = t2.seafarer_id 查询,comp_id的值都相等,无过滤性。优化能从gt_cp优化,同时如果distinct t2.seafarer_id查出的数量很多,如果有很多重复的数据,在关联嵌套循环时,要多次循环,可以考虑尽量把t2的子循环数据减少,同时减少seafarer_id的数,修改后SQL如下:

select  count(distinct t1.seafarer_id) as hisNum,
        count(distinct t2.seafarer_id) as jyNum
        from
            cy_cy_qf t1
        left join 
           (select   (distinct t3.seafarer_id)   seafarer_id
              from   gt_cp t4
              left join cy_cy_mf t3 
              on  t3.comp_id = t4.comp_id and 
                  t3.memo_kind_id = t4.const_key
              where
                  t3.comp_id = 'COMP2967' and
                  t3.delete_flag = '0' and t4.const_value = '就医/看诊') t2
        on t1.seafarer_id = t2.seafarer_id                 
        where 
            t1.delete_flag = '0' and
            t1.comp_id = 'COMP2967'

     SQL修改如下后,执行从无法查出数据降到只需0.2秒,同时没有建任何索引,性能大幅提升。

  案例9 

      SQL执行一直很慢,需要6秒才能有结果,SQL如下:(2023年4月25日补充案例)

SELECT
    m.id,
    m.comp_id,
    m.vessel_id,
    m.dept_id,
    m.vessel_name,
    m.device_id,
    d.device_name,
    m.order_type,
    m.plan_date,
    t.execution_content,
    t.plan_content,
    t.sp_out_store_id spOutStoreId,
    t.ma_out_store_id maOutStoreId,
    d.parent_device_id,
    d.parent_device_name,
    d.device_level_flag 
FROM
    mw_view m
    LEFT JOIN mw_order t ON m.id = t.id 
    AND m.comp_id = t.comp_id
    LEFT JOIN md_info d ON m.device_id = d.id 
WHERE
    1 = 1 
    AND m.comp_id = 'e98aab51fcd940f3b7aee670a2ea4207' 
    AND (
        m.vessel_id = '570ca38b05344c5daa30d00fccae8512' 
        OR m.vessel_id = 'd66417caacdd46a4918619eee0239d50' 
        OR m.vessel_id = '5a67345cb19c4e449243423285c60550' 
        OR m.vessel_id = 'e34a6304d1cc4fbd962cf852a04bcba3' 
        OR m.vessel_id = '35c9f507cd9645338c45588f00f24b6f' 
        OR m.vessel_id = 'f668e782b2b14e58b5346998d9a3be75' 
        OR m.vessel_id = '455393531f28411c86eaab071685664b' 
        OR m.vessel_id = 'cf5b84600d38494aa97c1824666d2eca' 
        OR m.vessel_id = '5156d56d648f471eb5ac4173db63842c' 
        OR m.vessel_id = 'ee5d5d871f6045088c5b5817193d5962' 
        OR m.vessel_id = '2fe2b46255ca4cad855f2476af496d76' 
        OR m.vessel_id = '0aa93557f6794c13ab14a4a432c5b7ed' 
        OR m.vessel_id = 'a2d587d2247d4426bec020776226f827' 
        OR m.vessel_id = '18437c78e58e4768bcec849f0b7bc8c4' 
        OR m.vessel_id = '5415db21fa7e47629d6563885aea92b5' 
        OR m.vessel_id = '6c534cd5ebfd42159c3a852c078ccc99' 
        OR m.vessel_id = 'e2d6568bfd614f5a92d2c25c13d56c02' 
        OR m.vessel_id = 'e87f3c7b33de4779a8bd5ad4c9fab00c' 
        OR m.vessel_id = '7114381f6bf2467dac1cb26d4a56ca71' 
        OR m.vessel_id = '48af2c42c3284c76b88cf2f57d34dc35' 
        OR m.vessel_id = 'b2fd6818be5346399a8db6785db1b20e' 
        OR m.vessel_id = '1d11b69b76224b5cbef8dfc0f5d37dda' 
        OR m.vessel_id = 'dd96e7b0658043889b67378552f91950' 
        OR m.vessel_id = '6ede3b68b0aa4aed9f54c90162701a80' 
        OR m.vessel_id = 'bda55c44da6f4b28a79e0eb2451afe7b' 
        OR m.vessel_id = '561d8e443e234507b72177fd65e947d5' 
        OR m.vessel_id = '5d52046476164e84af8998496c2d1227' 
    ) 
    AND ( m.order_type = 'delay' OR m.order_type = 'warn' ) 
    AND (
        m.status_flag = '00' 
        OR m.status_flag = '55' 
        OR m.status_flag = '45' 
        OR m.status_flag = '35' 
        OR m.status_flag = '07' 
        OR m.status_flag = '50' 
        OR m.status_flag = '40' 
        OR m.status_flag = '30' 
    ) 
ORDER BY
    m.order_type,
    m.vessel_name,
    m.plan_date 
    LIMIT 0,
    10;

    查看执行计划,表中加了 idx_cvs(comp_id,vessel_id,status_flag)索引也没有用,特别vessel_id 是in太多数据,和业务开发聊,能否减少vessel_id 值,回答是不能减少,测试发现去掉一半的vessel_id 值,就很快,查询就只需要查询0.2秒内,那如果不减少值,怎么才能提高效率,有其他办法?

     后来考虑是否把这个vessel_id 的值,分成2个SQL再Union all 起来,这样满足程序逻辑,又提高效率,测试的确可以,修改的SQL如下,SQL从以前的6秒降到0.2秒左右:  

select * from (
SELECT
    m.id,
    m.comp_id,
    m.vessel_id,
    m.dept_id,
    m.vessel_name,
    m.device_id,
    d.device_name,
    m.order_type,
    m.plan_date,
    t.execution_content,
    t.plan_content,
    t.sp_out_store_id spOutStoreId,
    t.ma_out_store_id maOutStoreId,
    d.parent_device_id,
    d.parent_device_name,
    d.device_level_flag 
FROM
    mw_view m  
    LEFT JOIN mw_order t ON m.id = t.id 
    AND m.comp_id = t.comp_id
    LEFT JOIN md_info d ON m.device_id = d.id 
WHERE
    1 = 1 
    AND m.comp_id = 'e98aab51fcd940f3b7aee670a2ea4207' 
    AND (
        m.vessel_id in('570ca38b05344c5daa30d00fccae8512' ,
     'd66417caacdd46a4918619eee0239d50' ,
      '5a67345cb19c4e449243423285c60550' ,
     'e34a6304d1cc4fbd962cf852a04bcba3' ,
     '35c9f507cd9645338c45588f00f24b6f' ,
     'f668e782b2b14e58b5346998d9a3be75' ,
     '455393531f28411c86eaab071685664b' ,
     'cf5b84600d38494aa97c1824666d2eca' ,
      '5156d56d648f471eb5ac4173db63842c' ,
     'ee5d5d871f6045088c5b5817193d5962' ,
     '2fe2b46255ca4cad855f2476af496d76' ,
     '0aa93557f6794c13ab14a4a432c5b7ed' ,
     'a2d587d2247d4426bec020776226f827' ,
     '18437c78e58e4768bcec849f0b7bc8c4' 
     )
    ) 
    AND ( m.order_type = 'delay' OR m.order_type = 'warn' ) 
    AND (
    m.status_flag = '00' 
    OR m.status_flag = '55' 
    OR m.status_flag = '45' 
    OR m.status_flag = '35' 
    OR m.status_flag = '07' 
    OR m.status_flag = '50' 
    OR m.status_flag = '40' 
    OR m.status_flag = '30' 
    ) 
union all 
    SELECT
    m.id,
    m.comp_id,
    m.vessel_id,
    m.dept_id,
    m.vessel_name,
    m.device_id,
    d.device_name,
    m.order_type,
    m.plan_date,
    t.execution_content,
    t.plan_content,
    t.sp_out_store_id spOutStoreId,
    t.ma_out_store_id maOutStoreId,
    d.parent_device_id,
    d.parent_device_name,
    d.device_level_flag 
FROM
    mw_view m  
    LEFT JOIN mw_order t ON m.id = t.id 
    AND m.comp_id = t.comp_id
    LEFT JOIN md_info d ON m.device_id = d.id 
WHERE
    1 = 1 
    AND m.comp_id = 'e98aab51fcd940f3b7aee670a2ea4207' 
    AND (
        m.vessel_id in(
     '5415db21fa7e47629d6563885aea92b5' ,
     '6c534cd5ebfd42159c3a852c078ccc99' ,
     'e2d6568bfd614f5a92d2c25c13d56c02' ,
     'e87f3c7b33de4779a8bd5ad4c9fab00c', 
     '7114381f6bf2467dac1cb26d4a56ca71' ,
     '48af2c42c3284c76b88cf2f57d34dc35' ,
     'b2fd6818be5346399a8db6785db1b20e' ,
     '1d11b69b76224b5cbef8dfc0f5d37dda', 
     'dd96e7b0658043889b67378552f91950' ,
     '6ede3b68b0aa4aed9f54c90162701a80' ,
     'bda55c44da6f4b28a79e0eb2451afe7b' ,
     '561d8e443e234507b72177fd65e947d5' ,
     '5d52046476164e84af8998496c2d1227' )
    ) 
    AND ( m.order_type = 'delay' OR m.order_type = 'warn' ) 
    AND (
    m.status_flag = '00' 
    OR m.status_flag = '55' 
    OR m.status_flag = '45' 
    OR m.status_flag = '35' 
    OR m.status_flag = '07' 
    OR m.status_flag = '50' 
    OR m.status_flag = '40' 
    OR m.status_flag = '30' 
    ) 
) t
  ORDER BY
    t.order_type,
    t.vessel_name,
    t.plan_date 
    LIMIT 0,
    10

  案例10

     该SQL执行2秒左右,优化方法: 改变驱动表SQL如下,从depot_transfer_goods 表改成查询depot_transfer 表,改变和减少驱动表行数,来优化SQL。(案例日期:2023年12月28日)

SELECT a.*, b.type, b.status, b.allotTime, b.from
FROM depot_transfer_goods a
    INNER JOIN depot_transfer  b ON a.evidenceNo = b.no
WHERE b.depotId = 1
    AND b.deleteStatus = 0
    AND a.deleteStatus = 0
    AND b.type IN (1)
    AND b.status IN (3)
    AND b.createTime BETWEEN 1672502400 AND 1702223999 
ORDER BY b.createTime DESC
LIMIT 0, 12

  优化后0.2秒左右,

select a.*, b.type, b.status, b.allotTime, b.from from (
select * from depot_transfer b where  createTime BETWEEN 1672502400 AND 1702223999
and  b.depotId = 1
    AND b.deleteStatus = 0 
    AND b.type IN (1)
    AND b.status IN (3)
    ) b inner join depot_transfer_goods a on a.evidenceNo = b.no
ORDER BY b.createTime DESC
LIMIT 0, 12

  案例11

    改变SQL的关联字段来优化,该SQL执行5秒左右,优化方法:改变关联字段,因mysql优化引擎不能传递相等字段(没有谓词下推),将ON t8.materialCode = t.materialCode 改成 ON t8.materialCode = t6.materielCode ,

t.materialCode,这t表是查询表,需t查询出来才能关联t8,改成实体表t6,性能更好 。 (案例日期:2023年12月28日)

SELECT t6.materielCode, t6.cargoOwnerCode, t6.depotCode
    , CONCAT(t6.materielCode, '-', t6.cargoOwnerCode, '-', t6.depotCode) AS threeCode
    , CAST(SYSDATE() AS DATE) AS outDate, t6.stockAvailable
    , IF(t8.id, 1, 0) AS isHighProfit
FROM (
    SELECT t1.materialCode, t1.shopId, t3.supplier_code
    FROM  oms_order_parent t
        INNER JOIN  oms_order_goods t1 ON t1.orderParentNo = t.orderNo
        INNER JOIN  cloud_shop t3 ON t3.id = t1.shopId
    WHERE t.createTime >= 1699545600
        AND t.warehouseCode = 'CK0001'
        AND (t.returnStatus IN (1, 3, 5)
            OR (t.returnStatus = 4
                AND t.warehouseOutStatus = 2))
    GROUP BY t1.materialCode, t.warehouseCode, t3.supplier_code
) t
    INNER JOIN  wms_depot_stock_collect t6
    ON t6.materielCode = t.materialCode
        AND t6.cargoOwnerCode = t.supplier_code
        AND t6.depotCode = 'CK0001'
        AND t6.stockAvailable <= 20
        AND t6.commodityType != 2
    LEFT JOIN  customer_material_factor_recommend t8
    ON t8.materialCode = t.materialCode
        AND t8.factorType = 'HIGHPROFIT'

  修改SQL,优化后0.42秒

SELECT t6.materielCode, t6.cargoOwnerCode, t6.depotCode
    , CONCAT(t6.materielCode, '-', t6.cargoOwnerCode, '-', t6.depotCode) AS threeCode
    , CAST(SYSDATE() AS DATE) AS outDate, t6.stockAvailable
    , IF(t8.id, 1, 0) AS isHighProfit
FROM (
    SELECT t1.materialCode, t1.shopId, t3.supplier_code
    FROM  oms_order_parent t
        INNER JOIN  oms_order_goods t1 ON t1.orderParentNo = t.orderNo
        INNER JOIN  cloud_shop t3 ON t3.id = t1.shopId
    WHERE t.createTime >= 1699545600
        AND t.warehouseCode = 'CK0001'
        AND (t.returnStatus IN (1, 3, 5)
            OR (t.returnStatus = 4
                AND t.warehouseOutStatus = 2))
    GROUP BY t1.materialCode, t.warehouseCode, t3.supplier_code
) t
    INNER JOIN  wms_depot_stock_collect t6
    ON t6.materielCode = t.materialCode
        AND t6.cargoOwnerCode = t.supplier_code
        AND t6.depotCode = 'CK0001'
        AND t6.stockAvailable <= 20
        AND t6.commodityType != 2
    LEFT JOIN  customer_material_factor_recommend t8
    ON t8.materialCode = t6.materielCode
        AND t8.factorType = 'HIGHPROFIT'

  案例12

    该SQL执行8秒左右,还使用了like的%查询,优化方法:将like语句的查询作为in条件,不要使用关联,避免优化引擎走错误的执行计划。 (案例日期:2023年12月28日)

SELECT count(DISTINCT t2.channelId) AS channelIdNum, count(DISTINCT t2.districtId) AS districtIdNum
FROM (
    SELECT t.customerCode, t.materialCode
    FROM  crm_behavior_recommend t
        INNER JOIN  erp_base_customer t6
        ON t.customerCode = t6.customerCode
            AND t6.isStaff = 0
    WHERE t.createTime >= FROM_UNIXTIME(1701964800)
        AND t.createTime <= FROM_UNIXTIME(1702051199)
        AND t.behaviorType IN (2, 3)
    UNION
    SELECT t.buyerCode, t2.materialCode
    FROM  oms_order_parent t
        INNER JOIN  oms_order_picking t1 ON t.orderNo = t1.orderNo
        INNER JOIN  oms_order_goods t2 ON t2.orderParentNo = t.orderNo
        INNER JOIN  erp_base_customer t6
        ON t.buyerCode = t6.customerCode
            AND t6.isStaff = 0
    WHERE t.createTime >= 1701964800
        AND t.createTime <= 1702051199
        AND t.returnStatus != 4
        AND t1.returnStatus != 4
) t
    INNER JOIN  oms_material_basics t1 ON t.materialCode = t1.materialCode
    INNER JOIN  erp_base_customer t2
    ON t.customerCode = t2.customerCode
        AND t2.isStaff = 0
    LEFT JOIN (
        SELECT t.id, t.name_path AS newCategoryName, t.category_name AS categoryName, t.id_path
        FROM `db_baseinfo`.xdnet_basic_category t
        WHERE t.category_level = 5
    ) t7
    ON t7.id = t1.newCategoryId
WHERE CONCAT(',', t7.id_path, ',') LIKE CONCAT('%,', 2394, ',%')

  优化后0.3秒左右 

select count(DISTINCT t1.channelId) AS channelIdNum, count(DISTINCT t1.districtId) AS districtIdNum from (
SELECT  DISTINCT t2.channelId ,  t2.districtId,t1.newCategoryId
FROM (
    SELECT t.customerCode, t.materialCode
    FROM  crm_behavior_recommend t
        INNER JOIN  erp_base_customer t6
        ON t.customerCode = t6.customerCode
            AND t6.isStaff = 0
    WHERE t.createTime >= FROM_UNIXTIME(1702224000)
        AND t.createTime <= FROM_UNIXTIME(1702310399)
        AND t.behaviorType IN (2, 3)
    UNION
    SELECT t.buyerCode, t2.materialCode
    FROM  oms_order_parent t
        INNER JOIN  oms_order_picking t1 ON t.orderNo = t1.orderNo
        INNER JOIN  oms_order_goods t2 ON t2.orderParentNo = t.orderNo
        INNER JOIN  erp_base_customer t6
        ON t.buyerCode = t6.customerCode
            AND t6.isStaff = 0
    WHERE t.createTime >= 1702224000
        AND t.createTime <= 1702310399
        AND t.returnStatus != 4
        AND t1.returnStatus != 4
) t
    INNER JOIN  oms_material_basics t1 ON t.materialCode = t1.materialCode
    INNER JOIN  erp_base_customer t2
    ON t.customerCode = t2.customerCode
        AND t2.isStaff = 0
    ) t1
 where  t1.newCategoryId in (     
        SELECT t.id 
        FROM  xdnet_basic_category t
        WHERE t.category_level = 5 and  CONCAT(',', t.id_path, ',') LIKE CONCAT('%,', 2394, ',%')
    ) 

案例13 

     研发兄弟发来一个SQL,说以下SQL执行很慢,到从库执行很快,他说是写库上执行慢,查不出来结果,试了的确在写库执行很慢,因为要select数据后直接insert,无法直接把SQL改到从库上,对比和从库的执行计划 (案例日期:2024年5月21日)

SELECT
    su.sys_user_id,
    11292938 AS group_id 
FROM
    sys_user AS su
    LEFT JOIN sys_user_info AS sui ON su.sys_user_id = sui.sys_user_id 
WHERE
    su.app_id = '61' 
    AND su.work_flag = '1' 
    AND su.sys_user_id IN (
    SELECT
        sys_user_id 
    FROM
        sys_user_tree_org 
    WHERE
        parent_id IN ( SELECT biz_id FROM group_executive_extension WHERE 
        app_id = '61' AND group_id = 11292938 
        AND type = 'ORG' AND biz_ext_type = 3 ) 
        AND parent_type = 3 
    ) 
    AND su.user_post IN (
    SELECT
        type 
    FROM
        sys_position 
    WHERE
        del_flag = 0 
    AND app_id = '61' 
    AND post_id IN ( SELECT biz_id FROM group_executive_extension 
    WHERE app_id = '61' AND type = 'POSITION_ID' AND group_id = 11292938 ))

    写库的执行计划如下:   

 执行计划说明:  

   id列:   

     1, id值相同 — 执行顺序由上至下,  2,id值不同 — id值越大优先级越高,越先被执行,3,id值既有相同,又有不同 — id值大的先执行,4,如果id值相同则由上到下执行   

   table列 : 

      1,直接显示表名或者表的别名,  2,<unionM,N> 由 ID 为 M,N 进行union 产生的表,3,< derivedN > 由 ID 为 N 衍生出来的表,4,< subqueryN> :由ID为N查询出来的表

     执行计划解释: 先sys_user_tree_org 和group_executive_extension关联查询查出结果(第一步),并物化存储,再作为驱动表查询sys_user ,再查询sys_user_info ,再查询sys_position,最后查询  group_executive_extension

       这里第一步查询出的结果有1.6万条,作为驱动表,有点大,并且是直接驱动表sys_user(有300万条+),这样嵌套循环太慢。看从库的执行计划如下:   

     这里可以看出从库执行计划,是将3个查询,分成2个查询结果后,再合并。 执行只需0.15秒

   知道SQL在主库的执行计划数据库选择错了,如何解决? 使用force index或者 ignore index都不能改变执行计划,这时只能修改SQL,修改如下:    

SELECT
    sys_user_id,
    group_id 
FROM
    (
    SELECT
        su.*,
        11292938 AS group_id 
    FROM
        sys_user AS su
        LEFT JOIN sys_user_info AS sui ON su.sys_user_id = sui.sys_user_id 
    WHERE
        su.app_id = '61' 
        AND su.work_flag = '1' 
    ) su 
WHERE
    su.sys_user_id IN (
    SELECT
        sys_user_id 
    FROM
        sys_user_tree_org 
    WHERE
        parent_id IN ( SELECT biz_id FROM group_executive_extension WHERE app_id = '61' 
        AND group_id = 11292938 AND type = 'ORG' AND biz_ext_type = 3 ) 
        AND parent_type = 3 
    ) 
    AND su.user_post IN (
    SELECT
        type 
    FROM
        sys_position 
    WHERE
        del_flag = 0 
    AND app_id = '361' 
    AND post_id IN ( SELECT biz_id FROM group_executive_extension WHERE app_id = '61' 
    AND type = 'POSITION_ID' AND group_id = 11292938 ))

   修改后,执行计划如下:和从库的类似,也是把3个查询,合并结果后再查, 这里把前面sys_user 和sys_user_info ,做为一个子查询整体,这样就先过滤掉直接嵌套循环300万条的sys_user,只是循环2者的结果1.6万条,优化后执行只需0.37秒,和从库直接多了一倍的时间,但比以前有了很大的改进。

 

总结:

    1,优化SQL,MySQL需要选择正确的驱动表,如果执行计划不正确,可用exists来明确驱动表

    2,加复合索引,最好先测试执行效果,有时预想和实际不一样

    3,转变优化思路:如like查询,无全文索引下,利用普通索引大量过滤当前表的数据行,再like查询,以提高查询效率。
 
posted @ 2021-06-08 10:39  zping  阅读(2525)  评论(0编辑  收藏  举报