Fork me on GitHub

完全背包问题实例

题目描述

零崎有很多朋友,其中有一个叫做lfj的接盘侠。

lfj是一个手残,他和零崎一起玩网游的时候不好好打本,天天看拍卖行,没过多久,就成为了一个出色的商人。时间一长,虽然挣了不少钱,却没时间练级了。

作为lfj的友人,零崎实在看不下去,于是他决定帮lfj一把。当然了,零崎肯定不会自己动手,活还得你们来干。

lfj可以提供给你们拍卖行所有能买到物品的价格和利润,由于游戏产出不限,所以可以假定只要有钱,即使是同一种东西,多少个也都能买到手。lfj还会告诉你他初始的成本。虽然零崎想让你们给出一次交易中利润最大的购买方案,但是lfj觉得只要知道最大利润就可以了。

输入

每组数据第一行为两个整数P和N,表示本金和拍卖行物品种类数。

接下来N行,每行两个数据pi,ci代表第i类物品的利润和购买价格。

1<=P<=20000,1<=N<=300,1<=c,p<=200

输出

对于每组数据,输出一行,为能获得的最大利润

输入样例

3 1
2 1
2 3
1 1
1 2
2 1

输出样例

6
4

Hint

使用if直接比较不要调用max()以防超时

完全背包问题:

完全背包和0-1背包的不同之处:完全背包的物品不再是只有一件而是有无数件,所以对于某一件物品也不再是拿(1)不拿(0)。而是变为了拿0件,1件,2件...k件,按照0-1背包问题的状态转移方程同样可以写出完全背包的状态转移方程

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

分析上述的状态转移方程

这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间已经不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

因此我们需要对改状态方程进行改进:

O(VN)的算法:

1 for (int i = 1; i <= N; i++)
2 
3     for (int v = 0; v <= V; v++)
4 
5        f[v] = max(f[v], f[v - c[i]] + w[i]);

 

或者f[i][v]=max(f[i-1][v],f[i][v-c[i]]+w[i])

可以发现和0-1背包不同的地方只是在于内部for循环的起止改变了顺序,为什么这样可以实现完全背包的要求呢?

首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。 

因此可以得到完全背包的代码实现:

1 void CompletePack(int cost , int weight)
2 {
3     for (int i = weight ; i <= W ; ++ i)
4         f[i] = max(f[i],f[i-weight]+cost) ;
5 }

下面给出本题的代码实现:

 1 #include <bits/stdc++.h>
 2 long long f[20010];
 3 long long c[310];
 4 long long v[310];
 5 using namespace std;
 6 
 7 int main()
 8 {
 9     int V,k;
10     while(~scanf("%d%d",&V,&k))
11     {
12         memset(f,0,sizeof(f));
13         memset(c,0,sizeof(c));
14         memset(v,0,sizeof(v));
15         for(int i=1; i<=k; i++)
16             scanf("%lld%lld",&v[i],&c[i]);
17         for(int i=1; i<=k; i++)
18         {
19             for(int j=c[i]; j<=V; j++)
20             {
21                 if(f[j-c[i]]+v[i]>=f[j])
22                     f[j]=f[j-c[i]]+v[i];
23                 else
24                     f[j]=f[j];
25             }
26         }
27         printf("%lld\n",f[V]);
28     }
29 }

 

posted @ 2015-11-15 11:58  伊甸一点  阅读(4897)  评论(2编辑  收藏  举报