TypeScript--泛型(generic)
介绍
软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性。 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能。
在像C#和Java这样的语言中,可以使用泛型
来创建可重用的组件,一个组件可以支持多种类型的数据。 这样用户就可以以自己的数据类型来使用组件。
泛型
下面来创建第一个使用泛型的例子:identity 函数。 这个函数会返回任何传入它的值
不用泛型的话,这个函数可能是下面这样:
function identity(arg: number): number { return arg; }
或者,我们使用any
类型来定义函数:
function identity(arg: any): any { return arg; }
使用any
类型会导致这个函数可以接收任何类型的arg
参数,这样就丢失了一些信息:传入的类型与返回的类型应该是相同的。 如果我们传入一个数字,我们只知道任何类型的值都有可能被返回。
因此,我们需要一种方法使返回值的类型与传入参数的类型是相同的。 这里,我们使用了类型变量,它是一种特殊的变量,只用于表示类型而不是值。
// <T> 称作泛型变量 function identity<T>(arg: T): T { return arg; }
我们给identity添加了类型变量T
。 T
帮助我们捕获用户传入的类型(比如:number
),之后我们就可以使用这个类型。 之后我们再次使用了T
当做返回值类型。现在我们可以知道参数类型与返回值类型是相同的了。 这允许我们跟踪函数里使用的类型的信息。
我们把这个版本的identity
函数叫做泛型,因为它可以适用于多个类型。 不同于使用any
,它不会丢失信息,像第一个例子那像保持准确性,传入数值类型并返回数值类型。
我们定义了泛型函数后,可以用两种方法使用。 第一种是,传入所有的参数,包含类型参数
let output = identity<string>("myString");
这里我们明确的指定了T
是string
类型,并做为一个参数传给函数,使用了<>
括起来而不是()
第二种方法更普遍。利用了类型推论 – 即编译器会根据传入的参数自动地帮助我们确定T的类型:
let output = identity("myString");
注意我们没必要使用尖括号(<>
)来明确地传入类型;编译器可以查看myString
的值,然后把T
设置为它的类型。 类型推论帮助我们保持代码精简和高可读性。如果编译器不能够自动地推断出类型的话,只能像上面那样明确的传入T的类型,在一些复杂的情况下,这是可能出现的
使用泛型变量
使用泛型创建像identity
这样的泛型函数时,编译器要求你在函数体必须正确的使用这个通用的类型。 换句话说,你必须把这些参数当做是任意或所有类型
看下之前identity
例子:
function identity<T>(arg: T): T { return arg; }
如果我们想同时打印出arg
的长度。 我们很可能会这样做:
function loggingIdentity<T>(arg: T): T { console.log(arg.length); // Error: T doesn't have .length return arg; }
如果这么做,编译器会报错说我们使用了arg
的.length
属性,但是没有地方指明arg
具有这个属性。 记住,这些类型变量代表的是任意类型,所以使用这个函数的人可能传入的是个数字,而数字是没有.length
属性的。
现在假设我们想操作T
类型的数组而不直接是T
。由于我们操作的是数组,所以.length
属性是应该存在的。 我们可以像创建其它数组一样创建这个数组:
// 返回的是一个 T 类型的数组 function loggingIdentity<T>(arg: T[]): T[] { console.log(arg.length); return arg; }
你可以这样理解loggingIdentity
的类型:泛型函数loggingIdentity
,接收类型参数T
和参数arg
,它是个元素类型是T
的数组,并返回元素类型是T
的数组。 如果我们传入数字数组,将返回一个数字数组,因为此时T
的的类型为number
。 这可以让我们把泛型变量T当做类型的一部分使用,而不是整个类型,增加了灵活性。
泛型约束
我们有时候想操作某类型的一组值,并且我们知道这组值具有什么样的属性。 在loggingIdentity
例子中,我们想访问arg
的length
属性,但是编译器并不能证明每种类型都有length
属性,所以就报错了。代码如下
function loggingIdentity<T>(arg: T): T { console.log(arg.length); // Error: T doesn't have .length return arg; }
相比于操作any所有类型,我们想要限制函数去处理任意带有.length
属性的所有类型。 只要传入的类型有这个属性,我们就允许,就是说至少包含这一属性。 为此,我们需要列出对于T的约束要求。
为此,我们定义一个接口来描述约束条件。 创建一个包含.length
属性的接口,使用这个接口和extends
关键字来实现约束:
// 创建了一个接口,具有 number 类型 interface Lengthwise { length: number; } // 使用 extends 和接口 限制 T 的类型 function loggingIdentity<T extends Lengthwise>(arg: T): T { console.log(arg.length); return arg; }
现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:
loggingIdentity(3); // 报错,number 是没有 length 属性的
我们需要传入符合约束类型的值,必须包含必须的属性:数组或者字符串都是有 length 属性的
loggingIdentity({length: 10, value: 3}); // 数组 loggingIdentity("abcd"); // 字符串
在泛型约束中使用类型参数
你可以声明一个类型参数,且它被另一个类型参数所约束。 比如,现在我们想要用属性名从对象里获取这个属性。 并且我们想要确保这个属性存在于对象obj
上,因此我们需要在这两个类型之间使用约束。
// 使用 extends keyof 限制 K function getProperty<T, K extends keyof T>(obj: T, key: K) { return obj[key]; } let x = { a: 1, b: 2, c: 3, d: 4 }; getProperty(x, "a"); // x 里有 a 属性 getProperty(x, "m"); // 报错,x 里没有 m 属性。Argument of type '"m"' is not assignable to parameter of type '"a" | "b" | "c" | "d"'.