celery--介绍
前戏
我们在做网站后端程序开发时,会碰到这样的需求:用户需要在我们的网站填写注册信息,我们发给用户一封注册激活邮件到用户邮箱,如果由于各种原因,这封邮件发送所需时间较长,那么客户端将会等待很久,造成不好的用户体验.
那么怎么解决这样的问题呢?
我们将耗时任务放到后台异步执行。不会影响用户其他操作。除了注册功能,例如上传,图形处理等等耗时的任务,都可以按照这种思路来解决。如何实现异步执行任务呢?我们可使用celery. celery除了刚才所涉及到的异步执行任务之外,还可以实现定时处理某些任务
介绍
Celery是一个功能完备即插即用的任务队列。它使得我们不需要考虑复杂的问题,使用非常简单。celery适用异步处理问题,当发送邮件、或者文件上传, 图像处理等等一些比较耗时的操作,我们可将其异步执行,这样用户不需要等待很久,提高用户体验。celery的特点是:
- 简单,易于使用和维护,有丰富的文档。
- 高效,单个celery进程每分钟可以处理数百万个任务。
- 灵活,celery中几乎每个部分都可以自定义扩展。
- celery非常易于集成到一些web开发框架中.
celery非常易于集成到一些web开发框架中.
Celery分为3个部分
(1)worker部分负责任务的处理,即工作进程(我的理解工作进程就是你写的python代码,当然还包括python调用系统工具功能)
(2)broker部分负责任务消息的分发以及任务结果的存储,这部分任务主要由中间数据存储系统完成,比如消息队列服务器RabbitMQ、redis、
Amazon SQS、MongoDB、IronMQ等或者关系型数据库,使用关系型数据库依赖sqlalchemy或者django的ORM
(3)Celery主类,进行任务最开始的指派与执行控制,他可以是单独的python脚本,也可以和其他程序结合,应用到django或者flask等web框架里面以及你能想到的任何应用
celery的模块架构
工作原理
celery任务队列
任务队列是一种跨线程、跨机器工作的一种机制.
任务队列中包含称作任务的工作单元。有专门的工作进程持续不断的监视任务队列,并从中获得新的任务并处理.
celery通过消息进行通信,通常使用一个叫Broker(中间人)来协client(任务的发出者)和worker(任务的处理者). clients发出消息到队列中,broker将队列中的信息派发给worker来处理。
一个celery系统可以包含很多的worker和broker,可增强横向扩展性和高可用性能。
安装
我们可以使用python的包管理器pip来安装
pip install celery
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
2019-07-21 selenium--页面元素相关的操作