基于TRE文章的非线性模型化线性方法
之前写过一篇有关TRE优化模型详解的博文:
这篇文章里面的附录给出了非线性模型化线性的方式,具体内容如下:
- 首先是篇文章的变量和原模型(具体见我上面那篇笔记):
- 其次这篇文章附录给出的非线性化线性的方法:
我觉得很经典,所以这几天我废了九牛二虎之力推导了这个附录的公式,并复现了它的化线性的过程•́‸ก
一、目标函数
- 目标函数中的非线性项为:
- 引入决策变量:
-
此时应加入下面约束条件,即式(A.13)~式(A.14) 和式(A.28)~式(A.29):
\[\sum_{i\in{I_{bzi}^t}}Y^t_{bzi}=1 \]\[\sum_{i\in{I_{ezi}^t}}Y^t_{ezi}=1 \]\[Y^t_{bzi},Y^t_{ezi}\in{\{0,1\}} \] -
引入价格集合(已知量),其中\(I^t_{bz}、I^t_{ez}\)为对应渠道的可选择价格数量,\(i={1,2,...,I^t_{bz}}或i={1,2,...,I^t_{ez}}\):
-
那么有:\(P^t_{bz}=\sum_{i\in{I^t_{bz}}}P^t_{bzi}Y^t_{bzi}\)、\(P^t_{ez}=\sum_{i\in{I^t_{ez}}}P^t_{ezi}Y^t_{ezi}\)
-
此时,目标函数变为:
-
目标函数中仍存在非线性项\(Y^t_{bzi}\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})\)和\(Y^t_{ezi}\sum_{w\in{Z}}(O^t_{bwz}+O^t_{ewz})\)
所以需要再引入下面决策变量,也就是式(A.6)~式(A.7):
\[V^t_{bzi}=Y^t_{bzi}\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz}) \]\[V^t_{ezi}=Y^t_{ezi}\sum_{w\in{Z}}(O^t_{bwz}+O^t_{ewz}) \]此时目标函数变为下式,也就是式(A.8) 的由来:
设\(\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})\)的上限为\(a\),\(\sum_{w\in{Z}}(O^t_{bwz}+O^t_{ewz})\)的上限为\(b\),要彻底转换目标函数变为线性,需要增加新的约束如下,包含了式(A.15)-式(A.18)、式(A.33)-式(A.34):
二、约束条件
-
非线性项为\(D^t_{bz}(P^t_{z})\)和\(D^t_{ez}(P^t_{z})\)
-
经过上面的转换,有:
-
\(e^{\beta_{0z}+\beta_{1z}P^t_{bz}}=e^{\beta_{0z}+\beta_{1z}\sum_{i\in{I^t_{bz}}}(P^t_{bzi}Y^t_{bzi})}\)其中,\(Y^t_{bzi}\)是一个0-1变量,所以又可以写成:\(e^{\beta_{0z}+\beta_{1z}P^t_{bz}}=\sum_{i\in{I^t_{bz}}}Y^t_{bzi}e^{\beta_{0z}+\beta_{1z}P^t_{bzi}}\).
-
同理,\(e^{\beta_{0z}+\beta_{1z}P^t_{ez}}=\sum_{i\in{I^t_{ez}}}Y^t_{ezi}e^{\beta_{0z}+\beta_{1z}P^t_{ezi}}\)
-
-
令
\[r^t_{bzi}=e^{\beta_{0z}+\beta_{1z}P^t_{bzi}} \]\[r^t_{ezi}=e^{\beta_{0z}+\beta_{1z}P^t_{ezi}} \]即式(A.1)~式(A.2),那么有:
\[D^t_{bz}(P^t_z)=n^t_z×\frac{\sum_{i\in{I^t_{bz}}}Y^t_{bzi}r^t_{bzi}}{\sum_{i\in{I^t_{bz}}}Y^t_{bzi}r^t_{bzi}+\sum_{i\in{I^t_{ez}}}Y^t_{ezi}r^t_{ezi}+1} \]\[D^t_{ez}(P^t_z)=n^t_z×\frac{\sum_{i\in{I^t_{ez}}}Y^t_{ezi}r^t_{ezi}}{\sum_{i\in{I^t_{bz}}}Y^t_{bzi}r^t_{bzi}+\sum_{i\in{I^t_{ez}}}Y^t_{ezi}r^t_{ezi}+1} \] -
为了将\(D^t_{bz}(P^t_{z})\)和\(D^t_{ez}(P^t_{z})\)化为线性,令:
\[R^t_z=\frac{1}{\sum_{i\in{I^t_{bz}}}Y^t_{bzi}r^t_{bzi}+\sum_{i\in{I^t_{ez}}}Y^t_{ezi}r^t_{ezi}+1} \]即式(A.3)。那么\(D^t_{bz}(P^t_{z})=n^t_zR^t_z\sum_{i\in{I^t_{bz}}}Y^t_{bzi}r^t_{bzi}\),\(D^t_{ez}(P^t_{z})=n^t_zR^t_z\sum_{i\in{I^t_{ez}}}Y^t_{ezi}r^t_{ezi}\),需要明确的是:\(\sum_{i\in{I^t_{bz}}}Y^t_{bzi}r^t_{bzi}+\sum_{i\in{I^t_{ez}}}Y^t_{ezi}r^t_{ezi}\geq{0}\),故\(R^t_z\leq{1}\)
-
此时仍存在非线性项\(\sum_{i\in{I^t_{bz}}}R^t_zY^t_{bzi}r^t_{bzi}\)和\(\sum_{i\in{I^t_{ez}}}R^t_zY^t_{ezi}r^t_{ezi}\)
令:
\[U^t_{bzi}=R^t_zY^t_{bzi} \]\[U^t_{ezi}=R^t_zY^t_{ezi} \]即式(A.4)-式(A.5)。此时需要新增的约束条件如下,包含了式(A.21)-式(A.27)、式(A.32)-式(A.34):
\[U^t_{bzi},U^t_{ezi}\geq{0} \]\[R^t_z\geq{0} \]\[U^t_{bzi}\leq{Y^t_{bzi}} \]\[U^t_{ezi}\leq{Y^t_{ezi}} \]\[U^t_{bzi}\leq{R^t_z} \]\[U^t_{ezi}\leq{R^t_z} \]\[U^t_{bzi}\leq{R^t_z}-(1-Y^t_{bzi}) \]\[U^t_{ezi}\leq{R^t_z}-(1-Y^t_{ezi}) \]\[\sum_{i\in{I^t_{bzi}}}U^t_{bzi}=R^t_z \]\[\sum_{i\in{I^t_{ezi}}}U^t_{ezi}=R^t_z \]
- 此时约束条件(6)、(7)变为:
-
那么\(a=n^t_z\sum_{i\in{I^t_{bz}}}U^t_{bzi}r^t_{bzi}\),\(b=n^t_z\sum_{i\in{I^t_{ez}}}U^t_{ezi}r^t_{ezi}\)。约束\(V^t_{bzi}\leq{a}Y^t_{bzi}\)和\(V^t_{ezi}\leq{b}Y^t_{ezi}\)分别变为:
\[V^t_{bzi}\leq{(n^t_z\sum_{i\in{I^t_{bz}}}U^t_{bzi}r^t_{bzi}})Y^t_{bzi}=n^t_zU^t_{bzi}\sum_{i\in{I^t_{bz}}}r^t_{bzi}Y^t_{bzi} \]\[V^t_{ezi}\leq{(n^t_z\sum_{i\in{I^t_{ez}}}U^t_{ezi}r^t_{ezi})}Y^t_{ezi}=n^t_zU^t_{ezi}\sum_{i\in{I^t_{ez}}}r^t_{ezi}Y^t_{ezi} \]-
已知\(V^t_{bzi}\geq{0}\),当\(Y^t_{bzi}=0\)时,上面的第一条约束条件变为\(V^t_{bzi}\leq{0}\),此时\(V^t_{bzi}\)应为0;当\(Y^t_{ezi}=1\)时,上面的约束条件变为\(V^t_{bzi}\leq{n^t_zU^t_{bzi}r^t_{bzi}}\),此时\(V^t_{bzi}\)的取值应当为\(0\leq{V^t_{bzi}}\leq{n^t_zU^t_{bzi}r^t_{bzi}}\)。
综上和同理,在约束\(V^t_{bzi},V^t_{ezi}\geq{0}\)下,式(A.19) 和式(A.20) 被推导出:
\[V^t_{bzi}\leq{a}Y^t_{bzi}\quad{}→\quad{}V^t_{bzi}\leq{n^t_zU^t_{bzi}r^t_{bzi}} \]\[V^t_{ezi}\leq{b}Y^t_{ezi}\quad{}→\quad{}V^t_{bzi}\leq{n^t_zU^t_{bzi}r^t_{bzi}} \]-
对于约束条件\(V^t_{bzi}\geq[{\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})}]-a(1-Y^t_{bzi})\)和\(V^t_{ezi}\geq[{\sum_{w\in{Z}}(O^t_{bwz}+O^t_{ewz})}]-b(1-Y^t_{ezi})\),它们分别变为:
\[V^t_{bzi}\geq[{\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})}]-(n^t_z\sum_{i\in{I^t_{bz}}}U^t_{bzi}r^t_{bzi})(1-Y^t_{bzi}) \]\[V^t_{ezi}\geq[{\sum_{w\in{Z}}(O^t_{bwz}+O^t_{ewz})}]-(n^t_z\sum_{i\in{I^t_{ez}}}U^t_{ezi}r^t_{ezi})(1-Y^t_{ezi}) \]当\(Y^t_{bzi}=0\)时,上面第一条约束条件变为\(\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})\leq{n^t_z\sum_{i\in{I^t_{bz}}}U^t_{bzi}r^t_{bzi}}\)这与文中式(6)相同;当\(Y^t_{bzi}=1\)时,它则变为\(V^t_{bzi}=\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})\),而这又被约束条件\(\sum_{i\in{I^t_{bzi}}}V^t_{bzi}={\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})}\)包含。
综上及同理,约束条件\(V^t_{bzi}\geq[{\sum_{w\in{Z}}(S^t_{bwz}+S^t_{ewz})}]-a(1-Y^t_{bzi})\)和\(V^t_{ezi}\geq[{\sum_{w\in{Z}}(O^t_{bwz}+O^t_{ewz})}]-b(1-Y^t_{ezi})\)均属于重复约束,可被消除。
-
由此,所有公式已全部被推出,但还多了两条约束:
-
对于约束条件\(U^t_{bzi}\leq{R^t_z}-(1-Y^t_{bzi})\)有:
-
\(Y^t_{bzi}=0\)时,\(R^t_z\geq{0}\),该约束已存在;\(Y^t_z=1\)时,\(U^t_{bzi}=R^t_{z}\),该约束已被\(\sum_{i\in{I^t_{bzi}}}U^t_{bzi}=R^t_z\)所包含。
-
综上及同理,约束条件\(U^t_{bzi}\leq{R^t_z}-(1-Y^t_{bzi})\)和\(U^t_{ezi}\leq{R^t_z}-(1-Y^t_{ezi})\)属于重复约束,均可被删除。
-
以上就是这篇论文公式全部的推导,上面是所使用的非线性化线性的方法简例如下。
三、简例
(1) 带有0-1变量的非线性规划问题
其中决策变量\(x_1\in{\{0,1\}}\),\(0\leq{x_2}\leq{a}\)
那么我们可以用下面的方法化为线性规划:
-
首先设一个新的决策变量\(y=x_1x_2\),并将问题转化为:
\[y\leq{ax_1} \]\[y\leq{x_2} \]\[y\geq{x_2-a(1-x_1)} \]\[y\geq{0} \] -
由此,问题变为了线性问题
(2) 带分母变量的非线性规划问题
\(s.t.\)
-
令\(z=\frac{1}{4x+5y}\),此时目标函数变为:\((x+2y)z+3z\),但仍含有非线性项,此时我们又令:\(xz=u,yz=v\),那么可以得到:
\[min\quad{u+2v+3z} \]\(s.t.\)
\[6u+7v\leq{8z} \]\[9u+10v\geq{0} \]\[u,v,z\geq{0} \] -
解上面的线性规划问题,可得到\(u,v,z\)的精确解,之后可代入式子解方程,得到\(x,y\)的精确解。