SQL Server TVPs 批量插入数据

在SQL Server 中插入一条数据使用Insert语句,但是如果想要批量插入一堆数据的话,循环使用Insert不仅效率低,而且会导致SQL一系统性能问题。下面介绍SQL Server支持的两种批量数据插入方法:Bulk和表值参数(Table-Valued Parameters),高效插入数据。

新建数据库:

--Create DataBase  
create database BulkTestDB;  
go  
use BulkTestDB;  
go  
--Create Table  
Create table BulkTestTable(  
Id int primary key,  
UserName nvarchar(32),  
Pwd varchar(16))  
go 

一.传统的INSERT方式

先看下传统的INSERT方式:一条一条的插入(性能消耗越来越大,速度越来越慢)

 

        //使用简单的Insert方法一条条插入 [慢]
        #region [ simpleInsert ]
        static void simpleInsert()
        {
            Console.WriteLine("使用简单的Insert方法一条条插入");
            Stopwatch sw = new Stopwatch();
            SqlConnection sqlconn = new SqlConnection("server=.;database=BulkTestDB;user=sa;password=123456;");
            SqlCommand sqlcmd = new SqlCommand();
            sqlcmd.CommandText = string.Format("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");
            sqlcmd.Parameters.Add("@p0", SqlDbType.Int);
            sqlcmd.Parameters.Add("@p1", SqlDbType.NVarChar);
            sqlcmd.Parameters.Add("@p2", SqlDbType.NVarChar);
            sqlcmd.CommandType = CommandType.Text;
            sqlcmd.Connection = sqlconn;
            sqlconn.Open();
            try
            {
                //循环插入1000条数据,每次插入100条,插入10次。  
                for (int multiply = 0; multiply < 10; multiply++)
                {
                    for (int count = multiply * 100; count < (multiply + 1) * 100; count++)
                    {

                        sqlcmd.Parameters["@p0"].Value = count;
                        sqlcmd.Parameters["@p1"].Value = string.Format("User-{0}", count * multiply);
                        sqlcmd.Parameters["@p2"].Value = string.Format("Pwd-{0}", count * multiply);
                        sw.Start();
                        sqlcmd.ExecuteNonQuery();
                        sw.Stop();
                    }
                    //每插入10万条数据后,显示此次插入所用时间  
                    Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
                }
                Console.ReadKey();
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
        }
        #endregion

 

循环插入1000条数据,每次插入100条,插入10次,效率是越来越慢。

 

二.较快速的Bulk插入方式:

使用使用Bulk插入[ 较快 ]

        //使用Bulk插入的情况 [ 较快 ]
        #region [ 使用Bulk插入的情况 ]
        static void BulkToDB(DataTable dt)
        {
            Stopwatch sw = new Stopwatch();
            SqlConnection sqlconn = new SqlConnection("server=.;database=BulkTestDB;user=sa;password=123456;");
            SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlconn);
            bulkCopy.DestinationTableName = "BulkTestTable";
            bulkCopy.BatchSize = dt.Rows.Count;
            try
            {
                sqlconn.Open();
                if (dt != null && dt.Rows.Count != 0)
                {
                    bulkCopy.WriteToServer(dt);
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
            finally
            {
                sqlconn.Close();
                if (bulkCopy != null)
                {
                    bulkCopy.Close();
                }
            }
        }
        static DataTable GetTableSchema()
        {
            DataTable dt = new DataTable();
            dt.Columns.AddRange(new DataColumn[] { 
                new DataColumn("Id",typeof(int)),
                new DataColumn("UserName",typeof(string)),
                new DataColumn("Pwd",typeof(string))
            });
            return dt;
        }
        static void BulkInsert()
        {
            Console.WriteLine("使用简单的Bulk插入的情况");
            Stopwatch sw = new Stopwatch();
            for (int multiply = 0; multiply < 10; multiply++)
            {
                DataTable dt = GetTableSchema();
                for (int count = multiply * 100; count < (multiply + 1) * 100; count++)
                {
                    DataRow r = dt.NewRow();
                    r[0] = count;
                    r[1] = string.Format("User-{0}", count * multiply);
                    r[2] = string.Format("Pwd-{0}", count * multiply);
                    dt.Rows.Add(r);
                }
                sw.Start();
                BulkToDB(dt);
                sw.Stop();
                Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
            }
        }
        #endregion

循环插入1000条数据,每次插入100条,插入10次,效率快了很多。

三.使用简称TVPs插入数据 

打开sqlserrver,执行以下脚本:

--Create Table Valued  
CREATE TYPE BulkUdt AS TABLE  
  (Id int,  
   UserName nvarchar(32),  
   Pwd varchar(16)
)

 

成功后在数据库中发现多了BulkUdt的缓存表。

使用简称TVPs插入数据

        //使用简称TVPs插入数据 [最快]
        #region [ 使用简称TVPs插入数据 ]
        static void TbaleValuedToDB(DataTable dt)
        {
            Stopwatch sw = new Stopwatch();
            SqlConnection sqlconn = new SqlConnection("server=.;database=BulkTestDB;user=sa;password=123456;");
            const string TSqlStatement =
                  "insert into BulkTestTable (Id,UserName,Pwd)" +
                  " SELECT nc.Id, nc.UserName,nc.Pwd" +
                  " FROM @NewBulkTestTvp AS nc";
            SqlCommand cmd = new SqlCommand(TSqlStatement, sqlconn);
            SqlParameter catParam = cmd.Parameters.AddWithValue("@NewBulkTestTvp", dt);
            catParam.SqlDbType = SqlDbType.Structured;
            catParam.TypeName = "dbo.BulkUdt";
            try
            {
                sqlconn.Open();
                if (dt != null && dt.Rows.Count != 0)
                {
                    cmd.ExecuteNonQuery();
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine("error>" + ex.Message);
            }
            finally
            {
                sqlconn.Close();
            }
        }
        static void TVPsInsert()
        {
            Console.WriteLine("使用简称TVPs插入数据");
            Stopwatch sw = new Stopwatch();
            for (int multiply = 0; multiply < 10; multiply++)
            {
                DataTable dt = GetTableSchema();
                for (int count = multiply * 100; count < (multiply + 1) * 100; count++)
                {
                    DataRow r = dt.NewRow();
                    r[0] = count;
                    r[1] = string.Format("User-{0}", count * multiply);
                    r[2] = string.Format("Pwd-{0}", count * multiply);
                    dt.Rows.Add(r);
                }
                sw.Start();
                TbaleValuedToDB(dt);
                sw.Stop();
                Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds));
            }
            Console.ReadLine();  
        }
        #endregion

循环插入1000条数据,每次插入100条,插入10次,效率是越来越慢,后面测试,将每次插入的数据量增大,会更大的体现TPVS插入的效率。

 

PS:

使用新特性TVPs插入100w数据 只需2秒,实例如下:

 --创建表
  CREATE TABLE  BulkCategorySubscriber
  (
    [category_id] [int] NOT NULL,
    [subscriber_id] [int] NOT NULL,
    [added_date] [datetime] NOT NULL  DEFAULT (getdate())
 )

 --创建 type
--Create Table Valued  
CREATE TYPE BulkCategorySubscriberType AS TABLE  
(
    [category_id] [int] NOT NULL,
    [subscriber_id] [int] NOT NULL,
    [added_date] [datetime] NOT NULL  DEFAULT (getdate())
 )  

 

--1、定于 dbo.BulkCategorySubscriberType 类型变量
declare @data dbo.BulkCategorySubscriberType 

--2、将100w数据插入到@data中
insert into @data(category_id,subscriber_id,added_date)
select top 1000000 category_id,subscriber_id,added_date from NewsLetterSystem_CategorySubscriber

--3、最后将@data中数据插入到目标数据表中
insert into BulkCategorySubscriber (category_id,subscriber_id,added_date)
select category_id,subscriber_id,added_date from @data

 

 

 

 

 

posted @ 2017-10-27 14:41  大空白纸  阅读(3696)  评论(1编辑  收藏  举报