cs231n spring 2017 Python/Numpy基础
本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3。
1. 基本数据类型:可以用 print(type(x)) 查看类型
1)整数、浮点数:
幂:x**y等价于pow(x, y);
不支持 x++、x--,支持 x+=1;
/是浮点除法,//是整除,3//2 = 1;
%取余;
2)布尔:
与(and,&)、或(or,|)、非(not),不要使用&&、||之类的。
3)字符串:
单引号 'abc' ,双引号 "abc",都可以;
字符串长度 len(a);
可以用 + 把多个字符串串联起来;
可以格式化的赋值,例如 a = '%s %s %d' % (x, y, 3);
字符串有很多内置的小函数可以调用,例如 s.capitalize(),s.upper(),s.replace('a', 'A') 等等。
2. 容器
1)列表 List:
赋值:x = [1, 2, ‘a’],跟一维数组很像,都是用方括号,但大小可以扩展,而且元素可以是任意类型。
取出元素 x[0] = 1,x[-1] = 'a',序号也是用方括号,从0开始,-1是倒数第一个。
末尾添加:x.append('b'),这时候x = [1, 2, 'a', 'b'];
取末尾值:y = x.pop(),这时候y = ‘b’, x = [1, 2, ‘a’];
可以像matlab一样取子集,y = x[1:2],这时候y = [2, 'a'];
可以用for循环遍历,enumerate可以取出元素的序列:
animals = ['cat', 'dog', 'monkey'] for animal in animals: print(animal) # Prints "cat", "dog", "monkey", each on its own line. animals = ['cat', 'dog', 'monkey'] for idx, animal in enumerate(animals): print('#%d: %s' % (idx + 1, animal)) # Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line
list comprehension的用法:
nums = [0, 1, 2, 3, 4] squares = [x ** 2 for x in nums] print(squares) # Prints [0, 1, 4, 9, 16] nums = [0, 1, 2, 3, 4] even_squares = [x ** 2 for x in nums if x % 2 == 0] print(even_squares) # Prints "[0, 4, 16]"
2)字典,Dictionary:
赋值用大括号,一个key冒号一个value,d = {'cat': 'cute', 'dog': 'furry'};
直接赋值就能增加元素,d['fish'] = 'wet',这时候 d = {'cat': 'cute', 'dog': 'furry', 'fish': 'wet'};
取值 a = d['fish'],这时候a = 'wet';
取值的时候可以设定默认值,d.get('monkey', 'N/A'),如果没有'moneky'词条就会输出'N/A'
可以for循环遍历, item()可以把key和value都取出来:
d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] print('A %s has %d legs' % (animal, legs)) # Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs" d = {'person': 2, 'cat': 4, 'spider': 8} for animal, legs in d.items(): print('A %s has %d legs' % (animal, legs)) # Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
Dictionary comprehensions的用法:
nums = [0, 1, 2, 3, 4] even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0} print(even_num_to_square) # Prints "{0: 0, 2: 4, 4: 16}"
3)集合,Set:
赋值用大括号,animals = {'cat', 'dog'},也可以不同类型的元素 x = {'a', 3, 'b', 3.52};
增加元素用add,删除元素用remove,animals.add('fish'),animals.remove('cat'),如果增加的元素已经有了就不操作,但如果想删除的元素集合里没有就会报错。
集合大小,len(animals);
查看集合内是否有某个元素 print(x in animals),有就是True,没有就是False;
也可以用for循环以及set comprehensions:
animals = {'cat', 'dog', 'fish'} for idx, animal in enumerate(animals): print('#%d: %s' % (idx + 1, animal)) # Prints "#1: fish", "#2: dog", "#3: cat" from math import sqrt nums = {int(sqrt(x)) for x in range(30)} print(nums) # Prints "{0, 1, 2, 3, 4, 5}"
4)Tuple:和list很像,差别在于,tuple可以作为字典和集合的元素,而list不行。
赋值用小括号,d = (5, 6);
取元素,d[0]。
3. 函数:注意缩进对齐,可以设置默认参数:
def hello(name, loud=False): if loud: print('HELLO, %s!' % name.upper()) else: print('Hello, %s' % name) hello('Bob') # Prints "Hello, Bob" hello('Fred', loud=True) # Prints "HELLO, FRED!"
4. 类
class Greeter(object): # Constructor def __init__(self, name): self.name = name # Create an instance variable # Instance method def greet(self, loud=False): if loud: print('HELLO, %s!' % self.name.upper()) else: print('Hello, %s' % self.name) g = Greeter('Fred') # Construct an instance of the Greeter class g.greet() # Call an instance method; prints "Hello, Fred" g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!"
5. Numpy的Array:
和list一样也是用中括号:
import numpy as np a = np.array([1, 2, 3]) # Create a rank 1 array print(type(a)) # Prints "<class 'numpy.ndarray'>" print(a.shape) # Prints "(3,)" print(a[0], a[1], a[2]) # Prints "1 2 3" a[0] = 5 # Change an element of the array print(a) # Prints "[5, 2, 3]" b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array print(b.shape) # Prints "(2, 3)" print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4" a = np.zeros((2,2)) # Create an array of all zeros print(a) # Prints "[[ 0. 0.] # [ 0. 0.]]" b = np.ones((1,2)) # Create an array of all ones print(b) # Prints "[[ 1. 1.]]" c = np.full((2,2), 7) # Create a constant array print(c) # Prints "[[ 7. 7.] # [ 7. 7.]]" d = np.eye(2) # Create a 2x2 identity matrix print(d) # Prints "[[ 1. 0.] # [ 0. 1.]]" e = np.random.random((2,2)) # Create an array filled with random values print(e) # Might print "[[ 0.91940167 0.08143941] # [ 0.68744134 0.87236687]]"
也可以取子集,x = y[1, :],取出第一行的全部元素;
有一个技巧是对矩阵的每一行某个元素进行操作:
# Create a new array from which we will select elements a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) # Create an array of indices b = np.array([0, 2, 0, 1]) # Select one element from each row of a using the indices in b print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]"
可以对array的序号进行筛选:
a = np.array([[1,2], [3, 4], [5, 6]]) bool_idx = (a > 2) # 对每个元素判断是否大于2. print(bool_idx) # Prints "[[False False] # [ True True] # [ True True]]" # 可以序号为真的取出来 print(a[bool_idx]) # Prints "[3 4 5 6]" # We can do all of the above in a single concise statement: print(a[a > 2]) # Prints "[3 4 5 6]"