Top
Set \(\rightarrow\) Space
(metrix\(\leftrightarrow\)map)
Exa:
1.\(\rho(x,y)=x+y\)?
(x)三角不等式:$$\rho(x, z) \leq \rho(x, y)+\rho(y,z)$$
2.\(\rho(x,y)=x \times y\)?
(x)三角不等式:$$\rho(x,z)\leq \rho(x, y)+\rho(y,z)$$
3.一个很有意思的天生的三角关系:距离
\(\sqrt{x^2+y^2}\)
\[\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}
\]
利用绝对值不等式,把绝对值压在了最下面,这个构造还挺有意思的,这个其实不容易想出来,\(x=(x_1,x_2)\)
5.$$\rho(x, y)=\left{\begin{array}{ll}
0 & \text { if } x=y \
1 & \text { if } x \neq y
\end{array}\right.$$
这个主要是在\(x=y\),将这个弄到0.....
\[\rho(x, y)=\left\{\begin{array}{ll}
1 & \text { if } x=y \\
0 & \text { if } x \neq y
\end{array}\right.\]
下面这个就不成立了
\[B\left(x_{0}, \epsilon\right)=\left\{x \in X \mid \rho\left(x_{0}, x\right)<\epsilon\right\}
\]