复变函数
\(x+i y, x, y \in R\longrightarrow (x, y)\)
\(x=\operatorname{Rez} \quad y=\operatorname{Imz}\)
\(\operatorname{Re} z=\frac{1}{2}(z+\bar{z})\)
\(\ln z=\frac{1}{2i}(z-\bar{z})\)
\(\operatorname{Re}\left(z_{1}+z_{2}\right)=\operatorname{Re} z_{1}+\operatorname{Re} z_{2}\)
\(I_{m} \left(z_{1}+z_{2}\right)=I_{m} z_{1}+I_{m} z_{2}\)
\(\left.\left(x_{1}, y_{2}\right) \cdot\left(x_{2}, y_{2}\right)=(x_{1} x_{2}-y_{1} y_{2}, y_{1} x_{2}+x_{1} y_{2}\right)\)
Note:\(\leq\) cannot be applied in \(C\)
Polan form
\(\theta=\tan ^{-1} \frac{y}{x}\):argument