数学分析总结
极值问题
非条件极值
条件极值
重积分
重积分的变量代换
柱面坐标代换
球面坐标代换
反常重积分
Poisson积分:
\(\int_{0}^{\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\)
利用\(\iint_{R^2}e^{-(x^{2}+y^{2})}dxdy\)
曲面积分
第一类曲线积分和第二类曲线积分
第二类曲面积分和第二类曲面积分
Green公式
\(\int_{\alpha D}Pdx+Qdy=\iint_{D} (\frac{\alpha Q}{\alpha x}-\frac{\alpha P}{\alpha y})dxdy\)
Gauss公式
\(\iiint_{\Omega} (\frac{\alpha P}{\alpha x}+\frac{\alpha Q}{\alpha y}+\frac{\alpha R}{\alpha z})dxdydz\)
Stokes公式
含参变量积分
含参变量常义积分
\(I(y)=\int_{a}^{b}f(x,y)dx \quad y\in[c,d]\)
积分次序交换顺序 \(\int_{c}^{d}dy\int_{a}^{b}f(x,y)dx=\int_{a}^{b}dx\int_{c}^{d}f(x,y)dy\)
习题:
(1)\(I=\int_{0}^{1}\frac{x^{b}-x^a}{lnx}dx,b>a>0\)
(\(\int_{a}^{b}x^{y}dy=\frac{x^{b}-x^a}{lnx}\))
\(\int_{0}^{1}dx\int_{a}^{b}x^{y}dy=\int_{a}^{b}dy\int_{0}^{1}x^{y}dx\)(展开\(x^{y}\)})=\(\int_{a}^{b}\frac{1}{1+y}dy=\frac{ln(1+b)}{ln(1+a)}\)
(2)
含参变量反常积分
Fourier 级数
函数的Fourier级数的展开
我们探讨这样一个问题:
假设\(f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{k}coskt+b_{k}sinkt\)
\(a_{0}=\)
\(a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{d} x, \quad n=0,1,2, \cdots\)
\(b_{n}=\frac{1}{\pi} \int_{-x}^{\pi} f(x) \sin n x \mathrm{d} x, \quad n=1,2, \cdots\)
我们称为Euler--Fourier公式