重积分

重积分

重积分的性质与计算

习题:
\(\iiint\limits_{\Omega}\frac{dxdydz}{(x+y+z)^{3}}\)其中\(\Omega\)为长方体\([1,2]\times[1,2]\times[1,2]\)

重积分的变量代换

柱面坐标代换

\[ \left\{ \begin{aligned} x & = & r\cos(\theta) \\ y & = & r\sin(\theta) \\ z & = & z \end{aligned} \right. \]

球面坐标代换

\[ \left\{ \begin{aligned} x & = & r\sin(\varphi)\cos(\theta) \\ y & = & r\sin(\varphi)\sin(\theta) \\ z & = & r\cos(\varphi) \end{aligned} \right. \]

习题:

\[\iint\limits_{D}sin(\pi\sqrt{x^{2}+y^{2}})dxdy \quad D=\{(x,y)|x^{2}+y^{2}\leq 1 \} \]

反常重积分

Poisson积分:

\(\int_{0}^{\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\)
利用\(\iint\limits_{R^2}e^{-(x^{2}+y^{2})}dxdy\)

posted @ 2020-01-07 08:29  _OscarLi  阅读(459)  评论(0编辑  收藏  举报