条件期望与重期望

条件期望与重期望

条件期望的定义:

\(E(x|y)=\int_{-\infty}^{\infty}xf(x|y)dx\)(连续)

\(E(x|y)=\sum\limits_ix_i\rho(X=x_i|Y=y_i)\)(离散)

重期望的性质

\(1.E(E(g(x)|Y))=\int_{-\infty}^{\infty}E(E(g(x)|Y))f_{Y}(y)dy\)

=\(\int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}g(x)f(x|y)dx]f_{Y}(y)dy\)

=\(\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g(x)f(x|y)f_{Y}(y)dxdy\)

=\(\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g(x)f(x|y)dxdy\)

=\(E(g(x))\)

\(2.E(h(y)g(x)|Y)\)

posted @ 2020-01-06 17:12  _OscarLi  阅读(3370)  评论(0编辑  收藏  举报