点集拓扑

拓扑总结

拓扑空间

一个集合X上一个拓扑是X的子集的一个族\(\Im\)

它满足以下条件:

\((i) \varnothing\)\(X\)都要在\(\Im\)

\((ii)\Im\)的任意子族的元素的并都要在\(\Im\)

\((iii)\Im\)的任意有限子族的元素的交都要在\(\Im\)

一个指定了拓扑\(\Im\)的集合X叫做一个拓扑空间(拓扑空间指的是有序对(\(\Im,X\)),一般来说不专门提到\(\Im\)

从某种角度来说,我们可以认为拓扑空间指的是一个集合X连同它的子集的一个族(拓扑空间指的是集合的某种组合)

\(X\)的子集的全部组合我们称之为幂集\(2^X\)

例子:

1.1:\(X=\{a,b,c,d,e,f\},\Im_{1} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,d\},\{b,c,d,e,f\}\}\)\(\Im_{1}\)满足上述的性质,\(\Im_{1}\)为X上的一个拓扑
1.2:\(X=\{a,b,c,d,e\},\Im_{2} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,e\},\{b,c,d\}\}\)\(\{a\}\cup\{c,d\} \nsubseteq \Im_{2}\),则\(\Im_{2}\)不是X上的拓扑
1.3\(X=\{a,b,c,d,e\},\Im_{3} =\{X,\varnothing,\{a\},\{f\},\{a,c,f\},\{b,c,d,e,f\}\}\)\(\{a\}\cap\{f\}\cap\{a,c,f\}\nsubseteq\Im_{3}\),则\(\Im_{3}\)不是X上的拓扑
1.4\(\mathbb{N}\),\(\Im_{4}\)\(\mathbb{N}\)组成的所有有限子集,这里我们注意一个概念,假设\(A_i={i},i\)取遍所有大于1的整数。因为每个\(A_i\)是一个开集,那么它们的并集应该也在这里,但是他们的并集是无限集,又不可能在这里,矛盾了。
\(\Im_{4}\)不是X上的拓扑

拓扑之间的细与粗

\(\Im\)\(\Im'\)为给定集合上的两个拓扑,如果\(\Im' \subset \Im\),称\(\Im'\)细于\(\Im\)

拓扑的基

posted @ 2020-01-01 15:14  _OscarLi  阅读(829)  评论(0编辑  收藏  举报