进程的概念及multiprocess模块的使用、守护进程与互斥锁

一.进程

进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。

  • 程序:一堆代码(死的)
  • 进程:正在运行的程序(活的)

注意:同一个程序执行两次,就会在操作系统中出现两个进程,所以我们可以同时运行一个软件,分别做不同的事情也不会混乱。

进程调度

要想多个进程交替运行,操作系统必须对这些进程进行调度,这个调度也不是随即进行的,而是需要遵循一定的法则,由此就有了进程的调度算法。

先来先服务(FCFS)调度算法

先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。由此可知,本算法适合于CPU繁忙型作业,而不利于I/O繁忙型的作业(进程)。

短作业优先调度算法

短作业(进程)优先调度算法(SJ/PF)是指对短作业或短进程优先调度的算法,该算法既可用于作业调度,也可用于进程调度。但其对长作业不利;不能保证紧迫性作业(进程)被及时处理;作业的长短只是被估算出来的。

时间片轮转法

时间片轮转(Round Robin,RR)法的基本思路是让每个进程在就绪队列中的等待时间与享受服务的时间成比例。在时间片轮转法中,需要将CPU的处理时间分成固定大小的时间片,例如,几十毫秒至几百毫秒。如果一个进程在被调度选中之后用完了系统规定的时间片,但又未完成要求的任务,则它自行释放自己所占有的CPU而排到就绪队列的末尾,等待下一次调度。同时,进程调度程序又去调度当前就绪队列中的第一个进程。
      显然,轮转法只能用来调度分配一些可以抢占的资源。这些可以抢占的资源可以随时被剥夺,而且可以将它们再分配给别的进程。CPU是可抢占资源的一种。但打印机等资源是不可抢占的。由于作业调度是对除了CPU之外的所有系统硬件资源的分配,其中包含有不可抢占资源,所以作业调度不使用轮转法。
在轮转法中,时间片长度的选取非常重要。首先,时间片长度的选择会直接影响到系统的开销和响应时间。如果时间片长度过短,则调度程序抢占处理机的次数增多。这将使进程上下文切换次数也大大增加,从而加重系统开销。反过来,如果时间片长度选择过长,例如,一个时间片能保证就绪队列中所需执行时间最长的进程能执行完毕,则轮转法变成了先来先服务法。时间片长度的选择是根据系统对响应时间的要求和就绪队列中所允许最大的进程数来确定的。
      在轮转法中,加入到就绪队列的进程有3种情况:
      一种是分给它的时间片用完,但进程还未完成,回到就绪队列的末尾等待下次调度去继续执行。
      另一种情况是分给该进程的时间片并未用完,只是因为请求I/O或由于进程的互斥与同步关系而被阻塞。当阻塞解除之后再回到就绪队列。
      第三种情况就是新创建进程进入就绪队列。
      如果对这些进程区别对待,给予不同的优先级和时间片从直观上看,可以进一步改善系统服务质量和效率。例如,我们可把就绪队列按照进程到达就绪队列的类型和进程被阻塞时的阻塞原因分成不同的就绪队列,每个队列按FCFS原则排列,各队列之间的进程享有不同的优先级,但同一队列内优先级相同。这样,当一个进程在执行完它的时间片之后,或从睡眠中被唤醒以及被创建之后,将进入不同的就绪队列。

多级反馈队列

前面介绍的各种用作进程调度的算法都有一定的局限性。如短进程优先的调度算法,仅照顾了短进程而忽略了长进程,而且如果并未指明进程的长度,则短进程优先和基于进程长度的抢占式调度算法都将无法使用。
而多级反馈队列调度算法则不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。在采用多级反馈队列调度算法的系统中,调度算法的实施过程如下所述。
(1) 应设置多个就绪队列,并为各个队列赋予不同的优先级。第一个队列的优先级最高,第二个队列次之,其余各队列的优先权逐个降低。该算法赋予各个队列中进程执行时间片的大小也各不相同,在优先权愈高的队列中,为每个进程所规定的执行时间片就愈小。例如,第二个队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍。
(2) 当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度。当轮到该进程执行时,如它能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列,……,如此下去,当一个长作业(进程)从第一队列依次降到第n队列后,在第n 队列便采取按时间片轮转的方式运行。

(3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1~(i-1)队列均空时,才会调度第i队列中的进程运行。如果处理机正在第i队列中为某进程服务时,又有新进程进入优先权较高的队列(第1~(i-1)中的任何一个队列),则此时新进程将抢占正在运行进程的处理机,即由调度程序把正在运行的进程放回到第i队列的末尾,把处理机分配给新到的高优先权进程。

进程的并行与并发

并行 : 并行是指两者同时执行,比如赛跑,两个人都在不停的往前跑;(资源够用,比如三个线程,四核的CPU )

并发 : 并发是指资源有限的情况下,两者交替轮流使用资源,比如一段路(单核CPU资源)同时只能过一个人,A走一段后,让给B,B用完继续给A ,交替使用,目的是提高效率。

区别:

并行是从微观上,也就是在一个精确的时间片刻,有不同的程序在执行,这就要求必须有多个处理器。
并发是从宏观上,在一个时间段上可以看出是同时执行的,比如一个服务器同时处理多个session。

同步异步阻塞非阻塞

状态介绍

img

  在了解其他概念之前,我们首先要了解进程的几个状态。在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞。

  (1)就绪(Ready)状态

  当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。

  (2)执行/运行(Running)状态当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。

  (3)阻塞(Blocked)状态正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。

img

同步和异步

用于描述任务的提交方式

所谓同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列,要么成功都成功,失败都失败,两个任务的状态可以保持一致。

所谓异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了,至于被依赖的任务最终是否真正完成,依赖它的任务无法确定,所以它是不可靠的任务序列.

例子:

比如我去银行办理业务,可能会有两种方式:
第一种 :选择排队等候;
第二种 :选择取一个小纸条上面有我的号码,等到排到我这一号时由柜台的人通知我轮到我去办理业务了;

第一种:前者(排队等候)就是同步等待消息通知,也就是我要一直在等待银行办理业务情况;

第二种:后者(等待别人通知)就是异步等待消息通知。在异步消息处理中,等待消息通知者(在这个例子中就是等待办理业务的人)往往注册一个回调机制,在所等待的事件被触发时由触发机制(在这里是柜台的人)通过某种机制(在这里是写在小纸条上的号码,喊号)找到等待该事件的人。

阻塞与非阻塞

用于描述任务的执行状态

阻塞和非阻塞这两个概念与程序(线程)等待消息通知(无所谓同步或者异步)时的状态有关。也就是说阻塞与非阻塞主要是程序(线程)等待消息通知时的状态角度来说的

例子:

继续上面的那个例子,不论是排队还是使用号码等待通知,如果在这个等待的过程中,等待者除了等待消息通知之外不能做其它的事情,那么该机制就是阻塞的,表现在程序中,也就是该程序一直阻塞在该函数调用处不能继续往下执行。
相反,有的人喜欢在银行办理这些业务的时候一边打打电话发发短信一边等待,这样的状态就是非阻塞的,因为他(等待者)没有阻塞在这个消息通知上,而是一边做自己的事情一边等待。

注意:同步非阻塞形式实际上是效率低下的,想象一下你一边打着电话一边还需要抬头看到底队伍排到你了没有。如果把打电话和观察排队的位置看成是程序的两个操作的话,这个程序需要在这两种不同的行为之间来回的切换,效率可想而知是低下的;而异步非阻塞形式却没有这样的问题,因为打电话是你(等待者)的事情,而通知你则是柜台(消息触发机制)的事情,程序没有在两种不同的操作中来回切换。

创建进程

multiprocess模块

仔细说来,multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。

from multiprocessing import Process


def run(name):
    print(f'{name}正在运行.')
    time.sleep(3)
    print(f'{name}已经结束.')


if __name__ == '__main__':
    p = Process(target=run, args=('jason',))
    p.start()  # 生成子进程
    p.join()

image

join方法

image

获得进程号

image

异步的理解

import time
from multiprocessing import Process


def run(name):
    print(f'{name}正在运行.')
    # print(os.getpid())
    # print(os.getppid())
    time.sleep(3)
    print(f'{name}已经结束.')


if __name__ == '__main__':
    start_time = time.time()
    for i in range(1, 4):
        p = Process(target=run, args=(i,))
        p.start()
        p.join()
    continuous_time = time.time() - start_time
    print(continuous_time)

image

import time
from multiprocessing import Process


def run(name):
    print(f'{name}正在运行.')
    time.sleep(3)
    print(f'{name}已经结束.')


if __name__ == '__main__':
    start_time = time.time()
    p_list = []
    for i in range(1, 4):
        p = Process(target=run, args=(i,))
        p.start()
        p_list.append(p)
    for p in p_list:
        p.join()
    print(time.time() - start_time)

image

image

其他方法

"""
1.current_process查看进程号
2.os.getpid() 查看进程号  os.getppid() 查看父进程进程号
3.进程的名字,p.name直接默认就有,也可以在实例化进程对象的时候通过关键字形式传入name=''
3.p.terminate()  杀死子进程 
4.p.is_alive()  判断进程是否存活	3,4结合看不出结果,因为操作系统需要反应时间。主进程睡0.1即可看出效果
"""

进程间默认无法交互

from multiprocessing import Process

money = 100


def test():
    global money
    money = 999


if __name__ == '__main__':
    p = Process(target=test)
    p.start()
    # 确保子进程运行完毕再打印
    p.join()
    print(money)

image

僵尸进程与孤儿进程

僵尸进程: 进程代码运行结束之后并没有直接结束而是需要等待回收子进程资源才能结束

孤儿进程: 主进程已经死亡(非正常)但是子进程还在运行

守护进程

会随着主进程的结束而结束。

主进程创建守护进程

  其一:守护进程会在主进程代码执行结束后就终止

  其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

from multiprocessing import Process
import time


def test(name):
    print(f'总管:{name} is running')
    time.sleep(3)
    print(f'总管:{name} is over')


if __name__ == '__main__':
    p = Process(target=test, args=('egon',))
    p.daemon = True  # # 设置为守护进程(一定要放在start语句上方)
    p.start()
    print('皇帝jason驾崩啦!!!')
    time.sleep(0.1)

image

进程互斥锁

在多个进程处理同一个数据时,容易发生错乱,为了解决这个问题,于是有了互斥锁这个概念,它可以使并发的进程变为串行运行,虽然降低了效率,但是提高了数据的安全性

不加锁:

import time, json, random
from multiprocessing import Process


# 查票
def check(name):
    with open(r'data.txt', 'r', encoding='utf8') as f:
        data_dic = json.load(f)
    print(f"{name}查看到剩余{data_dic.get('ticket')}张票.")


# 买票
def buy(name):
    with open(r'data.txt', 'r', encoding='utf8') as f:
        data_dic = json.load(f)
    time.sleep(random.random())
    if data_dic.get('ticket') > 0:
        data_dic['ticket'] -= 1
        with open(r'data.txt', 'w', encoding='utf8') as f1:
            json.dump(data_dic, f1)
        print(f'{name}购票成功')
    else:
        print('余票不足,无法购买.')


# 启动
def run(name):
    check(name)
    buy(name)


if __name__ == '__main__':
    for i in range(10):
        p = Process(target=run, args=(i,))
        p.start()

image

加锁处理

import time, json, random
from multiprocessing import Process, Lock


# 查票
def check(name):
    with open(r'data.txt', 'r', encoding='utf8') as f:
        data_dic = json.load(f)
    print(f"{name}查看到剩余{data_dic.get('ticket')}张票.")


# 买票
def buy(name):
    with open(r'data.txt', 'r', encoding='utf8') as f:
        data_dic = json.load(f)
    time.sleep(random.random())
    if data_dic.get('ticket') > 0:
        data_dic['ticket'] -= 1
        with open(r'data.txt', 'w', encoding='utf8') as f1:
            json.dump(data_dic, f1)
        print(f'{name}购票成功')
    else:
        print('余票不足,无法购买.')


# 启动
def run(name, mutex):
    check(name)
    mutex.acquire()  # 放置锁
    buy(name)
    mutex.release()  # 解除锁


if __name__ == '__main__':
    mutex = Lock()  # 生成锁
    for i in range(10):
        p = Process(target=run, args=(i, mutex))
        p.start()

image

posted @ 2022-01-13 21:44  zong涵  阅读(324)  评论(0编辑  收藏  举报