转自:http://blog.csdn.net/cywosp/article/details/6729715

1024! 末尾有多少个0?


末尾0的个数取决于乘法中因子2和5的个数。显然乘法中因子2的个数大于5的个数,所以我们只需统计因子5的个数。(例如5!=1*2*3*4*5,2的个数肯定大于等于5的个数)
是5的倍数的数有: 1024 / 5 = 204个
是25的倍数的数有:1024 / 25 = 40个
是125的倍数的数有:1024 / 125 = 8个
是625的倍数的数有:1024 / 625 = 1个
所以1024! 中总共有204+40+8+1=253个因子5。
也就是说1024! 末尾有253个0。


static int CountZero(int num) {
    int result = 0;

    while (num > 5) {
        num = (num - (num % 5)) / 5;                         //这个作法很好,有点意思,其实不写求余应该也行
        result += num;
    }
    return result;
}

 posted on 2014-04-25 16:57  zmlctt  阅读(703)  评论(0编辑  收藏  举报