如何合理地估算线程池大小?(转发)
如何合理地估算线程池大小?
这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:
如何设计线程池大小,使得可以在1s内处理完20个Transaction?
计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。
很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。
再来第二种简单的但不知是否可行的方法(N为CPU总核数):
- 如果是CPU密集型应用,则线程池大小设置为N+1
- 如果是IO密集型应用,则线程池大小设置为2N+1
如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。
接下来在这个文档:服务器性能IO优化 中发现一个估算公式:
最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:
最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目
可以得出一个结论:
线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
上一种估算方法也和这个结论相合。
一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:
- 尽量提高短板操作的并行化比率,比如多线程下载技术
- 增强短板能力,比如用NIO替代IO
第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:
加速比=优化前系统耗时 / 优化后系统耗时
加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:
Speedup <=
1
/ (F + (
1
-F)/N)
当N足够大时,串行化比率F越小,加速比Speedup越大。
写到这里,我突然冒出一个问题。
是否使用线程池就一定比使用单线程高效呢?
答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:
- 多线程带来线程上下文切换开销,单线程就没有这种开销
- 锁
当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。
所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。
最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:
001 package pool_size_calculate; 003 import java.math.BigDecimal; 004 import java.math.RoundingMode; 005 import java.util.Timer; 006 import java.util.TimerTask; 007 import java.util.concurrent.BlockingQueue; 008 009 /** 010 * A class that calculates the optimal thread pool boundaries. It takes the 011 * desired target utilization and the desired work queue memory consumption as 012 * input and retuns thread count and work queue capacity. 013 * 014 * @author Niklas Schlimm 015 * 016 */ 017 public abstract class PoolSizeCalculator { 018 019 /** 020 * The sample queue size to calculate the size of a single {@link Runnable} 021 * element. 022 */ 023 private final int SAMPLE_QUEUE_SIZE = 1000; 024 025 /** 026 * Accuracy of test run. It must finish within 20ms of the testTime 027 * otherwise we retry the test. This could be configurable. 028 */ 029 private final int EPSYLON = 20; 030 031 /** 032 * Control variable for the CPU time investigation. 033 */ 034 private volatile boolean expired; 035 036 /** 037 * Time (millis) of the test run in the CPU time calculation. 038 */ 039 private final long testtime = 3000; 040 041 /** 042 * Calculates the boundaries of a thread pool for a given {@link Runnable}. 043 * 044 * @param targetUtilization 045 * the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) */ protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { calculateOptimalCapacity(targetQueueSizeBytes); Runnable task = creatTask(); start(task); start(task); // warm up phase long cputime = getCurrentThreadCPUTime(); start(task); // test intervall cputime = getCurrentThreadCPUTime() - cputime; long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization); } private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { long mem = calculateMemoryUsage(); BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( mem), RoundingMode.HALF_UP); System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes); System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); } /** * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered task * @param wait * wait time of considered task * @param targetUtilization * target utilization of the system */ private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) { BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu); BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() .availableProcessors()); BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP))); System.out.println("Number of CPU: " + numberOfCPU); System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu); System.out.println("Wait time (nanos): " + wait); System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount); } /** * Runs the {@link Runnable} over a period defined in {@link #testtime}. * Based on Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue124.html). * * @param task * the runnable under investigation */ public void start(Runnable task) { long start = 0; int runs = 0; do { if (++runs > 5) { 046 throw new IllegalStateException("Test not accurate"); 047 } 048 expired = false; 049 start = System.currentTimeMillis(); 050 Timer timer = new Timer(); 051 timer.schedule(new TimerTask() { 052 public void run() { 053 expired = true; 054 } 055 }, testtime); 056 while (!expired) { 057 task.run(); 058 } 059 start = System.currentTimeMillis() - start; 060 timer.cancel(); 061 } while (Math.abs(start - testtime) > EPSYLON); 062 collectGarbage(3); 063 } 064 065 private void collectGarbage(int times) { 066 for (int i = 0; i < times; i++) { 067 System.gc(); 068 try { 069 Thread.sleep(10); 070 } catch (InterruptedException e) { 071 Thread.currentThread().interrupt(); 072 break; 073 } 074 } 075 } 076 077 /** 078 * Calculates the memory usage of a single element in a work queue. Based on 079 * Heinz Kabbutz' ideas 080 * (http://www.javaspecialists.eu/archive/Issue029.html). 081 * 082 * @return memory usage of a single {@link Runnable} element in the thread 083 * pools work queue 084 */ 085 public long calculateMemoryUsage() { 086 BlockingQueue queue = createWorkQueue(); 087 for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { 088 queue.add(creatTask()); 089 } 090 long mem0 = Runtime.getRuntime().totalMemory() 091 - Runtime.getRuntime().freeMemory(); 092 long mem1 = Runtime.getRuntime().totalMemory() 093 - Runtime.getRuntime().freeMemory(); 094 queue = null; 095 collectGarbage(15); 096 mem0 = Runtime.getRuntime().totalMemory() 097 - Runtime.getRuntime().freeMemory(); 098 queue = createWorkQueue(); 099 for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { 100 queue.add(creatTask()); 101 } 102 collectGarbage(15); 103 mem1 = Runtime.getRuntime().totalMemory() 104 - Runtime.getRuntime().freeMemory(); 105 return (mem1 - mem0) / SAMPLE_QUEUE_SIZE; 106 } 107 108 /** 109 * Create your runnable task here. 110 * 111 * @return an instance of your runnable task under investigation 112 */ 113 protected abstract Runnable creatTask(); 114 115 /** 116 * Return an instance of the queue used in the thread pool. 117 * 118 * @return queue instance 119 */ 120 protected abstract BlockingQueue createWorkQueue(); 121 122 /** 123 * Calculate current cpu time. Various frameworks may be used here, 124 * depending on the operating system in use. (e.g. 125 * http://www.hyperic.com/products/sigar). The more accurate the CPU time 126 * measurement, the more accurate the results for thread count boundaries. 127 * 128 * @return current cpu time of current thread 129 */ 130 protected abstract long getCurrentThreadCPUTime(); 131 132 }
然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:
01 package pool_size_calculate; 02 03 import java.io.BufferedReader; 04 import java.io.IOException; 05 import java.io.InputStreamReader; 06 import java.lang.management.ManagementFactory; 07 import java.math.BigDecimal; 08 import java.net.HttpURLConnection; 09 import java.net.URL; 10 import java.util.concurrent.BlockingQueue; 11 import java.util.concurrent.LinkedBlockingQueue; 12 13 public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator { 14 15 @Override 16 protected Runnable creatTask() { 17 return new AsyncIOTask(); 18 } 19 20 @Override 21 protected BlockingQueue createWorkQueue() { 22 return new LinkedBlockingQueue(1000); 23 } 24 25 @Override 26 protected long getCurrentThreadCPUTime() { 27 return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime(); 28 } 29 30 public static void main(String[] args) { 31 PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl(); 32 poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000)); 33 } 34 35 } 36 37 /** 38 * 自定义的异步IO任务 39 * @author Will 40 * 41 */ 42 class AsyncIOTask implements Runnable { 43 44 @Override 45 public void run() { 46 HttpURLConnection connection = null; 47 BufferedReader reader = null; 48 try { 49 String getURL = "http://baidu.com"; 50 URL getUrl = new URL(getURL); 51 52 connection = (HttpURLConnection) getUrl.openConnection(); 53 connection.connect(); 54 reader = new BufferedReader(new InputStreamReader( 55 connection.getInputStream())); 56 57 String line; 58 while ((line = reader.readLine()) != null) { 59 // empty loop 60 } 61 } 62 63 catch (IOException e) { 64 65 } finally { 66 if(reader != null) { 67 try { 68 reader.close(); 69 } 70 catch(Exception e) { 71 72 } 73 } 74 connection.disconnect(); 75 } 76 77 } 78 79 }
得到的输出如下:
01 Target queue memory usage (bytes): 100000 02 createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue 03 Formula: 100000 / 40 04 * Recommended queue capacity (bytes): 2500 05 Number of CPU: 4 06 Target utilization: 1 07 Elapsed time (nanos): 3000000000 08 Compute time (nanos): 47181000 09 Wait time (nanos): 2952819000 10 Formula: 4 * 1 * (1 + 2952819000 / 47181000) 11 * Optimal thread count: 256
推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:
ThreadPoolExecutor pool =
new
ThreadPoolExecutor(
256
,
256
, 0L, TimeUnit.MILLISECONDS,
new
LinkedBlockingQueue(
2500
));
原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 如何合理地估算线程池大小?