欢迎来到夜的世界

莫听穿林打叶声,何妨吟啸且徐行。竹杖芒鞋轻胜马,谁怕?一蓑烟雨任平生.料峭春风吹酒醒,微冷,山头斜照却相迎。回首向来萧瑟处,归去,也无风雨也无晴。
扩大
缩小

数据类型

    介绍    

存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的

详细参考链接:http://www.runoob.com/mysql/mysql-data-types.html

mysql常用数据类:

#1. 数字:
    整型:tinyint  int  bigint
    小数:
        float :在位数比较短的情况下不精准
        double :在位数比较长的情况下不精准
            0.000001230123123123
            存成:0.000001230000

        decimal:(如果用小数,则用推荐使用decimal)
            精准
            内部原理是以字符串形式去存

#2. 字符串:
    char(10):简单粗暴,浪费空间,存取速度快
            root存成root000000
    varchar:精准,节省空间,存取速度慢

    sql优化:创建表时,定长的类型往前放,变长的往后放
                    比如性别           比如地址或描述信息

    >255个字符,超了就把文件路径存放到数据库中。
            比如图片,视频等找一个文件服务器,数据库中只存路径或url。


#3. 时间类型:
    最常用:datetime


#4. 枚举类型与集合类型
   enum 和set

    一 . 数值类型    

整数类型 : tinyint , smallint , mediumint , int , bigint 

作用 : 存储年龄 , 等级(比如腾讯的 vip ,svip....) , id , 各种号码等

========================================
        tinyint[(m)] [unsigned] [zerofill]

            小整数,数据类型用于保存一些范围的整数数值范围:
            有符号:
                -128 ~ 127
            无符号:
~ 255

            PS: MySQL中无布尔值,使用tinyint(1)构造。



========================================
        int[(m)][unsigned][zerofill]

            整数,数据类型用于保存一些范围的整数数值范围:
            有符号:
                    -2147483648 ~ 2147483647
            无符号:
~ 4294967295



========================================
        bigint[(m)][unsigned][zerofill]
            大整数,数据类型用于保存一些范围的整数数值范围:
            有符号:
                    -9223372036854775808 ~ 9223372036854775807
            无符号:
 ~  18446744073709551615
View Code

    

  验证1 : 有符号和无符号 tinyint

============有符号tinyint==============
# 创建数据库db4
create database db4 charset utf8;

# 切换到当前db4数据库
mysql> use db4;

# 创建t1 规定x字段为tinyint数据类型(默认是有符号的)
mysql> create table t1(x tinyint);

# 验证,插入-1这个数
mysql>   insert into t1 values(-1);

# 查询 表记录,查询成功(证明默认是有符号类型)
mysql> select * from t1;
+------+
| x    |
+------+
| -1 |
+------+

#执行如下操作,会发现报错。因为有符号范围在(-128,127)
mysql>   insert into t1 values(-129),(128);
ERROR 1264 (22003): Out of range value for column 'x' at row 1


============无符号tinyint==============
# 创建表时定义记录的字符为无符号类型(0,255) ,使用unsigned
mysql> create table t2(x tinyint unsigned);

# 报错,超出范围
mysql>   insert into t2 values(-129);
ERROR 1264 (22003): Out of range value for column 'x' at row 1

# 插入成功
mysql>   insert into t2 values(255);
Query OK, 1 row affected (0.00 sec)

 

 验证2 :  int 类型后面的存储是显示宽度,而不是存储宽度

mysql> create table t3(id int(1) unsigned);

#插入255555记录也是可以的
mysql> insert into t3 values(255555);

mysql> select * from t3;
+--------+
| id     |
+--------+
| 255555 |
+--------+
ps:以上操作还不能够验证,再来一张表验证用zerofill 用0填充

# zerofill 用0填充
mysql> create table t4(id int(5) unsigned zerofill);


mysql> insert into t4 value(1);
Query OK, 1 row affected (0.00 sec)

#插入的记录是1,但是显示的宽度是00001
mysql> select * from t4;
+-------+
| id    |
+-------+
| 00001 |
+-------+
row in set (0.00 sec)

注意:为该类型指定宽度时,仅仅只是指定查询结果的显示宽度,与存储范围无关,存储范围如下

其实我们完全没必要为整数类型指定显示宽度,使用默认的就可以了

默认的显示宽度,都是在最大值的基础上加1

int的存储宽度是4个Bytes,即32个bit,即2**32

无符号最大值为:4294967296-1

有符号最大值:2147483648-1

有符号和无符号的最大数字需要的显示宽度均为10,而针对有符号的最小值则需要11位才能显示完全,所以int类型默认的显示宽度为11是非常合理的

最后:整形类型,其实没有必要指定显示宽度,使用默认的就ok.

 

    二 . 浮点型    

定点数类型: dec 等同于 declmal

浮点类型:float  double

作用:存储薪资、身高、体重、体质参数等

语法:

-------------------------FLOAT-------------------
FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]
#参数解释:单精度浮点数(非准确小数值),M是全长,D是小数点后个数。M最大值为255,D最大值为30

#有符号:
           -3.402823466E+38 to -1.175494351E-38,
           1.175494351E-38 to 3.402823466E+38

#无符号:
           1.175494351E-38 to 3.402823466E+38
#精确度: 
           **** 随着小数的增多,精度变得不准确 ****


 -------------------------DOUBLE-----------------------
DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

#参数解释: 双精度浮点数(非准确小数值),M是全长,D是小数点后个数。M最大值为255,D最大值为30

#有符号:
           -1.7976931348623157E+308 to -2.2250738585072014E-308
           2.2250738585072014E-308 to 1.7976931348623157E+308

#无符号:
           2.2250738585072014E-308 to 1.7976931348623157E+308

#精确度:
           ****随着小数的增多,精度比float要高,但也会变得不准确 ****

======================================
--------------------DECIMAL------------------------
decimal[(m[,d])] [unsigned] [zerofill]

#参数解释:准确的小数值,M是整数部分总个数(负号不算),D是小数点后个数。 M最大值为65,D最大值为30。


#精确度:
           **** 随着小数的增多,精度始终准确 ****
           对于精确数值计算时需要用此类型
           decaimal能够存储精确值的原因在于其内部按照字符串存储。

验证三种类型建表 : 

#1验证FLOAT类型建表:
mysql> create table t5(x float(256,31));
ERROR 1425 (42000): Too big scale 31 specified for column 'x'. Maximum is 30.
mysql> create table t5(x float(256,30));
ERROR 1439 (42000): Display width out of range for column 'x' (max = 255)
mysql> create table t5(x float(255,30)); #建表成功
Query OK, 0 rows affected (0.03 sec)

#2验证DOUBLE类型建表:
mysql> create table t6(x double(255,30)); #建表成功
Query OK, 0 rows affected (0.03 sec)

#3验证deimal类型建表:
mysql> create table t7(x decimal(66,31));
ERROR 1425 (42000): Too big scale 31 specified for column 'x'. Maximum is 30.
mysql> create table t7(x decimal(66,30));
ERROR 1426 (42000): Too big precision 66 specified for column 'x'. Maximum is 65.
mysql> create table t7(x decimal(65,30)); #建表成功
Query OK, 0 rows affected (0.00 sec)

验证三种类型的精度 : 

# 分别对三张表插入相应的记录
mysql> insert into t5 values(1.1111111111111111111111111111111);#小数点后31个1
Query OK, 1 row affected (0.01 sec)

mysql> insert into t6 values(1.1111111111111111111111111111111);
Query OK, 1 row affected (0.01 sec)

mysql> insert into t7 values(1.1111111111111111111111111111111);
Query OK, 1 row affected, 1 warning (0.00 sec)

# 查询结果
mysql> select * from t5; #随着小数的增多,精度开始不准确
+----------------------------------+
| x                                |
+----------------------------------+
| 1.111111164093017600000000000000 |
+----------------------------------+
1 row in set (0.00 sec)

mysql> select * from t6; #精度比float要准确点,但随着小数的增多,同样变得不准确
+----------------------------------+
| x                                |
+----------------------------------+
| 1.111111111111111200000000000000 |
+----------------------------------+
1 row in set (0.00 sec)

mysql> select * from t7; #精度始终准确,d为30,于是只留了30位小数
+----------------------------------+
| x                                |
+----------------------------------+
| 1.111111111111111111111111111111 |
+----------------------------------+
1 row in set (0.00 sec)

   总结 : 

小数 : 
    float : 在为数比较短的情况下不精确
    double : 在为数比较长的情况下不精确
            0.000001230123123123
        存成:0.000001230000        
    decimal : 精确 , 内部原理是以字符串形式去存.#(推荐)

 

   三 . 日期类型    

date , time , datetime , timestamp , year . 

作用 : 存储用户注册时间,文章发布时间 , 员工入职时间,出生时间 , 过期时间等.

语法:
        YEAR
            YYYY(1901/2155)

        DATE
            YYYY-MM-DD(1000-01-01/9999-12-31)

        TIME
            HH:MM:SS('-838:59:59'/'838:59:59')

        DATETIME

            YYYY-MM-DD HH:MM:SS(1000-01-01 00:00:00/9999-12-31 23:59:59    Y)

        TIMESTAMP

            YYYYMMDD HHMMSS(1970-01-01 00:00:00/2037 年某时)

  验证 : 

  1 . year 

mysql> create table t8(born_year year);
#无论year指定何种宽度,最后都默认是year(4) Query OK, 0 rows affected (0.03 sec) #插入失败,超出范围(1901/2155) mysql> insert into t8 values -> (1900), -> (1901), -> (2155), -> (2156); ERROR 1264 (22003): Out of range value for column 'born_year' at row 1 mysql> select * from t8; Empty set (0.01 sec) mysql> insert into t8 values -> (1905), -> (2018); Query OK, 2 rows affected (0.00 sec) #插入记录成功 Records: 2 Duplicates: 0 Warnings: 0 mysql> select * from t8; +-----------+ | born_year | +-----------+ | 1905 | | 2018 | +-----------+ 2 rows in set (0.00 sec)

  2 . date , year , datetime (*****)

#创建t9表
mysql> create table t9(d date,t time,dt datetime);
Query OK, 0 rows affected (0.06 sec)

#查看表的结构
mysql> desc t9;
+-------+----------+------+-----+---------+-------+
| Field | Type     | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+-------+
| d     | date     | YES  |     | NULL    |       |
| t     | time     | YES  |     | NULL    |       |
| dt    | datetime | YES  |     | NULL    |       |
+-------+----------+------+-----+---------+-------+
3 rows in set (0.14 sec)


# 调用mysql自带的now()函数,获取当前类型指定的时间 如下结构
mysql> insert into t9 values(now(),now(),now());
Query OK, 1 row affected, 1 warning (0.01 sec)

mysql> select * from t9;
+------------+----------+---------------------+
| d          | t        | dt                  |
+------------+----------+---------------------+
| 2018-06-09 | 09:35:20 | 2018-06-09 09:35:20 |
+------------+----------+---------------------+
1 row in set (0.00 sec)

  3 . timestamp(了解)

mysql>  create table t10(time timestamp);
Query OK, 0 rows affected (0.06 sec)

mysql>  insert into t10 values();
Query OK, 1 row affected (0.00 sec)

mysql>  insert into t10 values(null);
Query OK, 1 row affected (0.00 sec)

mysql>  select * from t10;
+------+
| time |
+------+
| NULL |
| NULL |
+------+

mysql> insert into t10 values(now());
Query OK, 1 row affected (0.01 sec)

mysql> select * from t10;
+---------------------+
| time                |
+---------------------+
| 2018-06-09 09:44:48 |
+---------------------+
1 row in set (0.01 sec)

     datatime 和 timestamp 的区别 

在实际应用的很多场景中,MySQL的这两种日期类型都能够满足我们的需要,存储精度都为秒,但在某些情况下,会展现出他们各自的优劣。
下面就来总结一下两种日期类型的区别。

1.DATETIME的日期范围是1001——9999年,TIMESTAMP的时间范围是1970——2038年。

2.DATETIME存储时间与时区无关,TIMESTAMP存储时间与时区有关,显示的值也依赖于时区。在mysql服务器,
操作系统以及客户端连接都有时区的设置。

3.DATETIME使用8字节的存储空间,TIMESTAMP的存储空间为4字节。因此,TIMESTAMP比DATETIME的空间利用率更高。

4.DATETIME的默认值为null;TIMESTAMP的字段默认不为空(not null),默认值为当前时间(CURRENT_TIMESTAMP),
如果不做特殊处理,并且update语句中没有指定该列的更新值,则默认更新为当前时间。
View Code

     注意事项 : 

============注意啦,注意啦,注意啦===========
#1. 单独插入时间时,需要以字符串的形式,按照对应的格式插入
#2. 插入年份时,尽量使用4位值
#3. 插入两位年份时,<=69,以20开头,比如50,  结果2050      
                >=70,以19开头,比如71,结果1971
 create table t12(y year);
 insert into t12 values  (50),(71);
 select * from t12;
+------+
| y    |
+------+
| 2050 |
| 1971 |
+------+
注意事项

    练习 : 

创建一张学生表(student),有id ,姓名 , 出生年份 , 出生的年月日 , 上学时间 , 和到学校的具体时间.

mysql> create table student(
    -> id int,
    -> name varchar(20),
    -> born_year year,
    -> birth date,
    -> class_time time,
    -> reg_time datetime
    -> );
Query OK, 0 rows affected (0.02 sec)

mysql> insert into student values
    ->   (1,'alex',"1995","1995-11-11","11:11:11","2017-11-11 11:11:11"),
    ->   (2,'egon',"1997","1997-12-12","12:12:12","2017-12-12 12:12:12"),
    ->   (3,'wsb',"1998","1998-01-01","13:13:13","2017-01-01 13:13:13");
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

mysql>   select * from student;
+------+------+-----------+------------+------------+---------------------+
| id   | name | born_year | birth      | class_time | reg_time            |
+------+------+-----------+------------+------------+---------------------+
|    1 | alex |      1995 | 1995-11-11 | 11:11:11   | 2017-11-11 11:11:11 |
|    2 | egon |      1997 | 1997-12-12 | 12:12:12   | 2017-12-12 12:12:12 |
|    3 | wsb  |      1998 | 1998-01-01 | 13:13:13   | 2017-01-01 13:13:13 |
+------+------+-----------+------------+------------+---------------------+
rows in set (0.00 sec)

 

  四 . 字符类型     

   官网 : https://dev.mysql.com/doc/refman/5.7/en/char.html

#注意:char和varchar括号内的参数指的都是字符的长度

#char类型:定长,简单粗暴,浪费空间,存取速度快
    字符长度范围:0-255(一个中文是一个字符,是utf8编码的3个字节)
    存储:
        存储char类型的值时,会往右填充空格来满足长度
        例如:指定长度为10,存>10个字符则报错,存<10个字符则用空格填充直到凑够10个字符存储

    检索:
        在检索或者说查询时,查出的结果会自动删除尾部的空格,除非我们打开pad_char_to_full_length SQL模式(设置SQL模式:SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
      查询sql的默认模式:select @@sql_mode;)

#varchar类型:变长,精准,节省空间,存取速度慢
    字符长度范围:0-65535(如果大于21845会提示用其他类型 。mysql行最大限制为65535字节,字符编码为utf-8:https://dev.mysql.com/doc/refman/5.7/en/column-count-limit.html)
    存储:
        varchar类型存储数据的真实内容,不会用空格填充,如果'ab  ',尾部的空格也会被存起来
        强调:varchar类型会在真实数据前加1-2Bytes的前缀,该前缀用来表示真实数据的bytes字节数(1-2Bytes最大表示65535个数字,正好符合mysql对row的最大字节限制,即已经足够使用)
        如果真实的数据<255bytes则需要1Bytes的前缀(1Bytes=8bit 2**8最大表示的数字为255)
        如果真实的数据>255bytes则需要2Bytes的前缀(2Bytes=16bit 2**16最大表示的数字为65535)

    检索:
        尾部有空格会保存下来,在检索或者说查询时,也会正常显示包含空格在内的内容

   官网解释如下 : 

   注意 : 两个函数

length();  #查看字节数

char_length();    #查看字符数

   char 填充空格来满足固定长度,但是在查询的时候却会将尾部的空格删除(装作自己没有浪费空间一样). 但是可以通过修改 sql_mode 让其现原形.

# 创建t1表,分别指明字段x为char类型,字段y为varchar类型
mysql> create table t1(x char(5),y varchar(4));
Query OK, 0 rows affected (0.16 sec)

# char存放的是5个字符,而varchar存4个字符
mysql>  insert into t1 values('你瞅啥 ','你瞅啥 ');
Query OK, 1 row affected (0.01 sec)

# 在检索时char很不要脸地将自己浪费的2个字符给删掉了,装的好像自己没浪费过空间一样,而varchar很老实,存了多少,就显示多少
mysql> select x,char_length(x),y,char_length(y) from t1;
+-----------+----------------+------------+----------------+
| x         | char_length(x) | y          | char_length(y) |
+-----------+----------------+------------+----------------+
| 你瞅啥    |              3 | 你瞅啥     |              4 |
+-----------+----------------+------------+----------------+
row in set (0.02 sec)

 #略施小计,让char现原形
 mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

#查看当前mysql的mode模式
mysql> select @@sql_mode;
+-------------------------+
| @@sql_mode              |
+-------------------------+
| PAD_CHAR_TO_FULL_LENGTH |
+-------------------------+
row in set (0.00 sec)

#原形毕露了吧。。。。
mysql> select x,char_length(x) y,char_length(y) from t1;
+-------------+------+----------------+
| x           | y    | char_length(y) |
+-------------+------+----------------+
| 你瞅啥      |    5 |              4 |
+-------------+------+----------------+
row in set (0.00 sec)

# 查看字节数
#char类型:3个中文字符+2个空格=11Bytes
#varchar类型:3个中文字符+1个空格=10Bytes
mysql> select x,length(x),y,length(y) from t1;
+-------------+-----------+------------+-----------+
| x           | length(x) | y          | length(y) |
+-------------+-----------+------------+-----------+
| 你瞅啥      |        11 | 你瞅啥     |        10 |
+-------------+-----------+------------+-----------+
row in set (0.02 sec)

    总结 : 

字符串 : 
    char(10) : 简单粗暴 , 浪费空间,存取速度快
                    root 存成 root000000
    varchar : 精确 , 节省空间 , 存取速度慢
    sql 优化 : 创建表时, 定长的类型往前放 , 变长的往后放

    >255个字符,超了就把文件路径存放到数据库中。
    图片,视频等找一个文件服务器,数据库中只存路径或url。
整数 : tinyint , int , bigint

浮点型 : float , double , decimal

时间 : year , date , time , datetime

布尔类型 : boolean  tinyint(1)  #存1表示true , 存0表示false.

字符 : char 定长  >  varchar 变长  >  text  文本
#注意 : 虽然varchar使用起来比较灵活,但是从整个系统的性能角度来说,char 数据类型的处理速度更快 , 

text:text数据类型用于保存变长的大字符串,可以组多到65535 (2**16 − 1)个字符。
mediumtext:A TEXT column with a maximum length of 16,777,215 (2**24 − 1) characters.
longtext:A TEXT column with a maximum length of 4,294,967,295 or 4GB (2**32 − 1) characters.

 

    五 . 枚举类型和集合类型    

字段的值只能在给定的范围内选择,如单选框,多选框

enum 单选, 只能在给定的范围内选一个值,如性别 sex 男male / 女female

set 多选. 在给定的范围内可以选择一个或者多个值,(爱好1,爱好2,爱好3......)

mysql> create table consumer(
    -> id int,
    -> name varchar(50),
    -> sex enum('male','female','other'),
    -> level enum('vip1','vip2','vip3','vip4'),#在指定范围内,多选一
    -> fav set('play','music','read','study') #在指定范围内,多选多
    -> );
Query OK, 0 rows affected (0.03 sec)


mysql> insert into consumer values
    -> (1,'赵云','male','vip2','read,study'),
    -> (2,'赵云2','other','vip4','play');
Query OK, 2 rows affected (0.00 sec)
Records: 2  Duplicates: 0  Warnings: 0

mysql> select * from consumer;
+------+---------+-------+-------+------------+
| id   | name    | sex   | level | fav        |
+------+---------+-------+-------+------------+
|    1 | 赵云    | male  | vip2  | read,study |
|    2 | 赵云2   | other | vip4  | play       |
+------+---------+-------+-------+------------+
rows in set (0.00 sec)

 

      六 . 数据的增删改查     

       增删改          

  • 插入数据    insert
  • 更新数据    update
  • 删除数据    delete
一、
在MySQL管理软件中,可以通过SQL语句中的DML语言来实现数据的操作,包括

1.使用INSERT实现数据的插入
2.UPDATE实现数据的更新
3.使用DELETE实现数据的删除
4.使用SELECT查询数据以及。


二、插入数据 INSERT
1. 插入完整数据(顺序插入)
    语法一:
    INSERT INTO 表名(字段1,字段2,字段3…字段n) VALUES(值1,值2,值3…值n);

    语法二:
    INSERT INTO 表名 VALUES (值1,值2,值3…值n);

2. 指定字段插入数据
    语法:
    INSERT INTO 表名(字段1,字段2,字段3…) VALUES (值1,值2,值3…);

3. 插入多条记录
    语法:
    INSERT INTO 表名 VALUES
        (值1,值2,值3…值n),
        (值1,值2,值3…值n),
        (值1,值2,值3…值n);

 4. 插入查询结果
    语法:
    INSERT INTO 表名(字段1,字段2,字段3…字段n) 
                    SELECT (字段1,字段2,字段3…字段n) FROM 表2
                    WHERE …;

三、更新数据UPDATE
语法:
    UPDATE 表名 SET
        字段1=值1,
        字段2=值2,
        WHERE CONDITION;

示例:
    UPDATE mysql.user SET password=password(‘123’) 
        where user=’root’ and host=’localhost’;
四、删除数据DELETE
语法:
    DELETE FROM 表名 
        WHERE CONITION;

示例:
    DELETE FROM mysql.user 
        WHERE password=’’;

 

                          查                                

           单表查询            

   语法 : 

一、单表查询的语法
   SELECT 字段1,字段2... FROM 表名
                  WHERE                  #条件        
                  GROUP BY field      #分组查询
                  HAVING                 # 筛选
                  ORDER BY field      #查询排序
                  LIMIT                    #限制条数
二、关键字的执行优先级(重点)

重点中的重点:关键字的执行优先级
from
where
group by
having
select
distinct
order by
limit
1.找到表:from

2.拿着where指定的约束条件,去文件/表中取出一条条记录

3.将取出的一条条记录进行分组group by,如果没有group by,则整体作为一组

4.将分组的结果进行having过滤

5.执行select

6.去重

7.将结果按条件排序:order by

8.限制结果的显示条数

    创建公司员工表,表的字段和数据类型

company.employee
    员工id          id                          int                  
    姓名            name                        varchar                                                             
    性别            sex                         enum                                                                  
    年龄            age                         int
    入职日期         hire_date                   date
    岗位            post                        varchar
    职位描述         post_comment             varchar
    薪水            salary                    double
    办公室           office                     int
    部门编号         depart_id                   int
#创建表,设置字段的约束条件
create table employee(
    id int primary key auto_increment,
    name  varchar(20) not null,
    sex enum('male','female') not null default 'male', #大部分是男的
    age int(3) unsigned not null default 28,
    hire_date date not null,
    post varchar(50),
    post_comment varchar(100),
    salary  double(15,2),
    office int,#一个部门一个屋
    depart_id int
);
# 查看表结构
mysql> desc employee;
+--------------+-----------------------+------+-----+---------+----------------+
| Field                | Type                              | Null | Key     | Default | Extra          |
+--------------+-----------------------+------+-----+---------+----------------+
| id                      | int(11)                            | NO   | PRI     | NULL    | auto_increment |
| emp_name             | varchar(20)                   | NO   |             | NULL    |                |
| sex                  | enum('male','female')   | NO   |             | male    |                |
| age                  | int(3) unsigned               | NO   |             | 28         |                |
| hire_date        | date                              | NO   |             | NULL    |                |
| post                 | varchar(50)                   | YES  |         | NULL    |                |
| post_comment     | varchar(100)                  | YES  |         | NULL    |                |
| salart               | double(15,2)                  | YES  |         | NULL    |                |
| office              | int(11)                           | YES  |         | NULL    |                |
| depart_id        | int(11)                           | YES  |         | NULL    |                |
+--------------+-----------------------+------+-----+---------+----------------+
rows in set (0.08 sec)

#插入记录
#三个部门:教学,销售,运营
insert into employee(name ,sex,age,hire_date,post,salary,office,depart_id) values
('egon','male',18,'20170301','老男孩驻沙河办事处外交大使',7300.33,401,1), #以下是教学部
('alex','male',78,'20150302','teacher',1000000.31,401,1),
('wupeiqi','male',81,'20130305','teacher',8300,401,1),
('yuanhao','male',73,'20140701','teacher',3500,401,1),
('liwenzhou','male',28,'20121101','teacher',2100,401,1),
('jingliyang','female',18,'20110211','teacher',9000,401,1),
('jinxin','male',18,'19000301','teacher',30000,401,1),
('xiaomage','male',48,'20101111','teacher',10000,401,1),

('歪歪','female',48,'20150311','sale',3000.13,402,2),#以下是销售部门
('丫丫','female',38,'20101101','sale',2000.35,402,2),
('丁丁','female',18,'20110312','sale',1000.37,402,2),
('星星','female',18,'20160513','sale',3000.29,402,2),
('格格','female',28,'20170127','sale',4000.33,402,2),

('张野','male',28,'20160311','operation',10000.13,403,3), #以下是运营部门
('程咬金','male',18,'19970312','operation',20000,403,3),
('程咬银','female',18,'20130311','operation',19000,403,3),
('程咬铜','male',18,'20150411','operation',18000,403,3),
('程咬铁','female',18,'20140512','operation',17000,403,3)
;

创建员工表,并插入记录
创建员工表,并插入记录

 

   (1) . where 约束 

where子句中可以使用
1.比较运算符:>、<、>=、<=、<>、!=
2.between 80 and 100 :值在80到100之间
3.in(80,90,100)值是10或20或30
4.like 'xiaomagepattern': pattern可以是%或者_。%小时任意多字符,_表示一个字符
5.逻辑运算符:在多个条件直接可以使用逻辑运算符 and or not

      验证 : 

#1 :单条件查询
mysql> select id,emp_name from employee where id > 5;
+----+------------+
| id | emp_name   |
+----+------------+
|  6 | jingliyang |
|  7 | jinxin     |
|  8 | xiaomage   |
|  9 | 歪歪       |
| 10 | 丫丫       |
| 11 | 丁丁       |
| 12 | 星星       |
| 13 | 格格       |
| 14 | 张野       |
| 15 | 程咬金     |
| 16 | 程咬银     |
| 17 | 程咬铜     |
| 18 | 程咬铁     |

#2 多条件查询
mysql> select emp_name from employee where post='teacher' and salary>10000;
+----------+
| emp_name |
+----------+
| alex         |
| jinxin     |
+----------+

#3.关键字BETWEEN AND
 SELECT name,salary FROM employee 
        WHERE salary BETWEEN 10000 AND 20000;

 SELECT name,salary FROM employee 
        WHERE salary NOT BETWEEN 10000 AND 20000;

#注意''是空字符串,不是null
 SELECT name,post_comment FROM employee WHERE post_comment='';
 ps:
        执行
        update employee set post_comment='' where id=2;
        再用上条查看,就会有结果了
#5:关键字IN集合查询
mysql>  SELECT name,salary FROM employee WHERE salary=3000 OR salary=3500 OR salary=4000 OR salary=9000 ;
+------------+---------+
| name       | salary  |
+------------+---------+
| yuanhao    | 3500.00 |
| jingliyang | 9000.00 |
+------------+---------+
rows in set (0.00 sec)

mysql>  SELECT name,salary FROM employee  WHERE salary IN (3000,3500,4000,9000) ;
+------------+---------+
| name       | salary  |
+------------+---------+
| yuanhao    | 3500.00 |
| jingliyang | 9000.00 |
+------------+---------+
mysql>  SELECT name,salary FROM employee  WHERE salary NOT IN (3000,3500,4000,9000) ;
+-----------+------------+
| name      | salary     |
+-----------+------------+
| egon      |    7300.33 |
| alex      | 1000000.31 |
| wupeiqi   |    8300.00 |
| liwenzhou |    2100.00 |
| jinxin    |   30000.00 |
| xiaomage  |   10000.00 |
| 歪歪      |    3000.13 |
| 丫丫      |    2000.35 |
| 丁丁      |    1000.37 |
| 星星      |    3000.29 |
| 格格      |    4000.33 |
| 张野      |   10000.13 |
| 程咬金    |   20000.00 |
| 程咬银    |   19000.00 |
| 程咬铜    |   18000.00 |
| 程咬铁    |   17000.00 |
+-----------+------------+
rows in set (0.00 sec)

#6:关键字LIKE模糊查询
通配符’%’
mysql> SELECT * FROM employee WHERE name LIKE 'jin%';
+----+------------+--------+-----+------------+---------+--------------+----------+--------+-----------+
| id | name       | sex    | age | hire_date  | post    | post_comment | salary   | office | depart_id |
+----+------------+--------+-----+------------+---------+--------------+----------+--------+-----------+
|  6 | jingliyang | female |  18 | 2011-02-11 | teacher | NULL         |  9000.00 |    401 |         1 |
|  7 | jinxin     | male   |  18 | 1900-03-01 | teacher | NULL         | 30000.00 |    401 |         1 |
+----+------------+--------+-----+------------+---------+--------------+----------+--------+-----------+
rows in set (0.00 sec)


通配符'_'

mysql> SELECT  age FROM employee WHERE name LIKE 'ale_';
+-----+
| age |
+-----+
|  78 |
+-----+
row in set (0.00 sec)

练习:
1. 查看岗位是teacher的员工姓名、年龄
2. 查看岗位是teacher且年龄大于30岁的员工姓名、年龄
3. 查看岗位是teacher且薪资在9000-1000范围内的员工姓名、年龄、薪资
4. 查看岗位描述不为NULL的员工信息
5. 查看岗位是teacher且薪资是10000或9000或30000的员工姓名、年龄、薪资
6. 查看岗位是teacher且薪资不是10000或9000或30000的员工姓名、年龄、薪资
7. 查看岗位是teacher且名字是jin开头的员工姓名、年薪

#对应的sql语句
select name,age from employee where post = 'teacher';
select name,age from employee where post='teacher' and age > 30; 
select name,age,salary from employee where post='teacher' and salary between 9000 and 10000;
select * from employee where post_comment is not null;
select name,age,salary from employee where post='teacher' and salary in (10000,9000,30000);
select name,age,salary from employee where post='teacher' and salary not in (10000,9000,30000);
select name,salary*12 from employee where post='teacher' and name like 'jin%';

where约束
where约束

 

   (2) . group by  分组查询 

#1、首先明确一点:分组发生在where之后,即分组是基于where之后得到的记录而进行的

#2、分组指的是:将所有记录按照某个相同字段进行归类,比如针对员工信息表的职位分组,或者按照性别进行分组等

#3、为何要分组呢?
    取每个部门的最高工资
    取每个部门的员工数
    取男人数和女人数

小窍门:‘每’这个字后面的字段,就是我们分组的依据

#4、大前提:
    可以按照任意字段分组,但是分组完毕后,比如group by post,只能查看post字段,如果想查看组内信息,需要借助于聚合函数

      当执行以下sql语句的时候,是以 post 字段查询了组中的第一条数据,没有任何意义,因为我们现在想查出当前组的多条记录.

mysql> select * from employee group by post;
+----+--------+--------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
| id | name   | sex    | age | hire_date  | post                                    | post_comment | salary     | office | depart_id |
+----+--------+--------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
| 14 | 张野   | male   |  28 | 2016-03-11 | operation                               | NULL         |   10000.13 |    403 |         3 |
|  9 | 歪歪   | female |  48 | 2015-03-11 | sale                                    | NULL         |    3000.13 |    402 |         2 |
|  2 | alex   | male   |  78 | 2015-03-02 | teacher                                 |              | 1000000.31 |    401 |         1 |
|  1 | egon   | male   |  18 | 2017-03-01 | 驻沙河办事处外交大使              | NULL         |    7300.33 |    401 |         1 |
+----+--------+--------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
4 rows in set (0.00 sec)

#由于没有设置ONLY_FULL_GROUP_BY,于是也可以有结果,默认都是组内的第一条记录,但其实这是没有意义的
如果想分组,则必须要设置全局的sql的模式为ONLY_FULL_GROUP_BY
mysql> set global sql_mode='ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

#查看MySQL 5.7默认的sql_mode如下:
mysql> select @@global.sql_mode;
+--------------------+
| @@global.sql_mode  |
+--------------------+
| ONLY_FULL_GROUP_BY |
+--------------------+
1 row in set (0.00 sec)

mysql> exit;#设置成功后,一定要退出,然后重新登录方可生效
Bye
View Code

      继续验证通过 group by 分组之后,只能查询当前字段,如果想看组内信息,需要借助聚合函数.

mysql> select * from emp group by post;# 报错
ERROR 1054 (42S22): Unknown column 'post' in 'group statement'



mysql>  select post from employee group by post;
+-----------------------------------------+
| post                                    |
+-----------------------------------------+
| operation                               |
| sale                                    |
| teacher                                 |
| 驻沙河办事处外交大使              |
+-----------------------------------------+
4 rows in set (0.00 sec)

 

      (3) . 集合函数 

max()求最大值
min()求最小值
avg()求平均值
sum() 求和
count() 求总个数

#强调:聚合函数聚合的是组的内容,若是没有分组,则默认一组
# 每个部门有多少个员工
select post,count(id) from employee group by post;
# 每个部门的最高薪水
select post,max(salary) from employee group by post;
# 每个部门的最低薪水
select post,min(salary) from employee group by post;
# 每个部门的平均薪水
select post,avg(salary) from employee group by post;
# 每个部门的所有薪水
select post,sum(age) from employee group by post;
1. 查询岗位名以及岗位包含的所有员工名字
2. 查询岗位名以及各岗位内包含的员工个数
3. 查询公司内男员工和女员工的个数
4. 查询岗位名以及各岗位的平均薪资
5. 查询岗位名以及各岗位的最高薪资
6. 查询岗位名以及各岗位的最低薪资
7. 查询男员工与男员工的平均薪资,女员工与女员工的平均薪资
小练习

 

    (4) . having 过滤 

having 和 where 的区别 :

#1 . 执行优先级从高到低 : where > group by > having 

#2 . where 发生在分组 group by 之前,因而 where 中可以有任意字段,但是绝对不能使用聚合函数.

#3 . having 发生在分组 group by 之后,因而 having 中可以使用分组的字段,无法直接取到其他字段,可以使用聚合函数.

     验证 : 

验证:
mysql> select * from employee where salary>1000000;
+----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
| id | name | sex  | age | hire_date  | post    | post_comment | salary     | office | depart_id |
+----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
|  2 | alex | male |  78 | 2015-03-02 | teacher |              | 1000000.31 |    401 |         1 |
+----+------+------+-----+------------+---------+--------------+------------+--------+-----------+
1 row in set (0.00 sec)

mysql> select * from employee having salary>1000000;
ERROR 1463 (42000): Non-grouping field 'salary' is used in HAVING clause

# 必须使用group by才能使用group_concat()函数,将所有的name值连接
mysql> select post,group_concat(name) from emp group by post having salary > 10000; ##错误,分组后无法直接取到salary字段
ERROR 1054 (42S22): Unknown column 'post' in 'field list'
View Code
#1. 查询各岗位内包含的员工个数小于2的岗位名、岗位内包含员工名字、个数
#2. 查询各岗位平均薪资大于10000的岗位名、平均工资
#3. 查询各岗位平均薪资大于10000且小于20000的岗位名、平均工资

# 题1:
mysql> select post,group_concat(name),count(id) from employee group by post;
+-----------------------------------------+-----------------------------------------------------------+-----------+
| post                                    | group_concat(name)                                        | count(id) |
+-----------------------------------------+-----------------------------------------------------------+-----------+
| operation                               | 程咬铁,程咬铜,程咬银,程咬金,张野                          |         5 |
| sale                                    | 格格,星星,丁丁,丫丫,歪歪                                  |         5 |
| teacher                                 | xiaomage,jinxin,jingliyang,liwenzhou,yuanhao,wupeiqi,alex |         7 |
| 老男孩驻沙河办事处外交大使              | egon                                                      |         1 |
+-----------------------------------------+-----------------------------------------------------------+-----------+
rows in set (0.00 sec)

mysql> select post,group_concat(name),count(id) from employee group by post having count(id)<2;
+-----------------------------------------+--------------------+-----------+
| post                                    | group_concat(name) | count(id) |
+-----------------------------------------+--------------------+-----------+
| 老男孩驻沙河办事处外交大使              | egon               |         1 |
+-----------------------------------------+--------------------+-----------+
row in set (0.00 sec)


#题2:
mysql> select post,avg(salary) from employee group by post having avg(salary) > 10000;
+-----------+---------------+
| post      | avg(salary)   |
+-----------+---------------+
| operation |  16800.026000 |
| teacher   | 151842.901429 |
+-----------+---------------+
rows in set (0.00 sec)

#题3:
mysql> select post,avg(salary) from employee group by post having avg(salary) > 10000 and avg(salary) <20000;
+-----------+--------------+
| post      | avg(salary)  |
+-----------+--------------+
| operation | 16800.026000 |
+-----------+--------------+
row in set (0.00 sec)
练习和答案

 

     (5) . order by 查询排序

按单列排序
    SELECT * FROM employee ORDER BY age;
    SELECT * FROM employee ORDER BY age ASC;
    SELECT * FROM employee ORDER BY age DESC;
按多列排序:先按照age升序排序,如果年纪相同,则按照id降序
    SELECT * from employee
        ORDER BY age ASC,     #asc 升序
        id DESC;              # desc 降序
验证多列排序:
SELECT * from employee ORDER BY age ASC,id DESC;
mysql> SELECT * from employee ORDER BY age ASC,id DESC;
+----+------------+--------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
| id | name       | sex    | age | hire_date  | post                                    | post_comment | salary     | office | depart_id |
+----+------------+--------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
| 18 | 程咬铁     | female |  18 | 2014-05-12 | operation                               | NULL         |   17000.00 |    403 |         3 |
| 17 | 程咬铜     | male   |  18 | 2015-04-11 | operation                               | NULL         |   18000.00 |    403 |         3 |
| 16 | 程咬银     | female |  18 | 2013-03-11 | operation                               | NULL         |   19000.00 |    403 |         3 |
| 15 | 程咬金     | male   |  18 | 1997-03-12 | operation                               | NULL         |   20000.00 |    403 |         3 |
| 12 | 星星       | female |  18 | 2016-05-13 | sale                                    | NULL         |    3000.29 |    402 |         2 |
| 11 | 丁丁       | female |  18 | 2011-03-12 | sale                                    | NULL         |    1000.37 |    402 |         2 |
|  7 | jinxin     | male   |  18 | 1900-03-01 | teacher                                 | NULL         |   30000.00 |    401 |         1 |
|  6 | jingliyang | female |  18 | 2011-02-11 | teacher                                 | NULL         |    9000.00 |    401 |         1 |
|  1 | egon       | male   |  18 | 2017-03-01 | 老男孩驻沙河办事处外交大使              | NULL         |    7300.33 |    401 |         1 |
| 14 | 张野       | male   |  28 | 2016-03-11 | operation                               | NULL         |   10000.13 |    403 |         3 |
| 13 | 格格       | female |  28 | 2017-01-27 | sale                                    | NULL         |    4000.33 |    402 |         2 |
|  5 | liwenzhou  | male   |  28 | 2012-11-01 | teacher                                 | NULL         |    2100.00 |    401 |         1 |
| 10 | 丫丫       | female |  38 | 2010-11-01 | sale                                    | NULL         |    2000.35 |    402 |         2 |
|  9 | 歪歪       | female |  48 | 2015-03-11 | sale                                    | NULL         |    3000.13 |    402 |         2 |
|  8 | xiaomage   | male   |  48 | 2010-11-11 | teacher                                 | NULL         |   10000.00 |    401 |         1 |
|  4 | yuanhao    | male   |  73 | 2014-07-01 | teacher                                 | NULL         |    3500.00 |    401 |         1 |
|  2 | alex       | male   |  78 | 2015-03-02 | teacher                                 |              | 1000000.31 |    401 |         1 |
|  3 | wupeiqi    | male   |  81 | 2013-03-05 | teacher                                 | NULL         |    8300.00 |    401 |         1 |
+----+------------+--------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
rows in set (0.01 sec)

mysql>

验证多列排序
验证多列排序
#1. 查询所有员工信息,先按照age升序排序,如果age相同则按照hire_date降序排序
#2. 查询各岗位平均薪资大于10000的岗位名、平均工资,结果按平均薪资升序排列
#3. 查询各岗位平均薪资大于10000的岗位名、平均工资,结果按平均薪资降序排列

# 题目1
select * from employee ORDER BY age asc,hire_date desc;

# 题目2
mysql> select post,avg(salary) from employee group by post having avg(salary) > 10000 order by avg(salary) asc;
+-----------+---------------+
| post      | avg(salary)   |
+-----------+---------------+
| operation |  16800.026000 |
| teacher   | 151842.901429 |
+-----------+---------------+
rows in set (0.00 sec)

# 题目3
mysql> select post,avg(salary) from employee group by post having avg(salary) > 10000 order by avg(salary) desc;
+-----------+---------------+
| post      | avg(salary)   |
+-----------+---------------+
| teacher   | 151842.901429 |
| operation |  16800.026000 |
+-----------+---------------+
rows in set (0.00 sec)

mysql>

小练习答案 
练习和答案

 

    (6) . limit  限制查询的记录数

select * from employee order by salary desc
    limit 3;                        #起始位置是0
select * from employee order by salary desc
    limit 0,5;                     #从第0条开始,显示个数是5个
    
select * from employee order by salary desc
    limit 5,5;                      #从第五条开始,即先查询出第六条,包含这一天向后查5条
# 第1页数据
  mysql> select * from  employee limit 0,5;
+----+-----------+------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
| id | name      | sex  | age | hire_date  | post                                    | post_comment | salary     | office | depart_id |
+----+-----------+------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
|  1 | egon      | male |  18 | 2017-03-01 | 老男孩驻沙河办事处外交大使              | NULL         |    7300.33 |    401 |         1 |
|  2 | alex      | male |  78 | 2015-03-02 | teacher                                 |              | 1000000.31 |    401 |         1 |
|  3 | wupeiqi   | male |  81 | 2013-03-05 | teacher                                 | NULL         |    8300.00 |    401 |         1 |
|  4 | yuanhao   | male |  73 | 2014-07-01 | teacher                                 | NULL         |    3500.00 |    401 |         1 |
|  5 | liwenzhou | male |  28 | 2012-11-01 | teacher                                 | NULL         |    2100.00 |    401 |         1 |
+----+-----------+------+-----+------------+-----------------------------------------+--------------+------------+--------+-----------+
rows in set (0.00 sec)
# 第2页数据
mysql> select * from  employee limit 5,5;
+----+------------+--------+-----+------------+---------+--------------+----------+--------+-----------+
| id | name       | sex    | age | hire_date  | post    | post_comment | salary   | office | depart_id |
+----+------------+--------+-----+------------+---------+--------------+----------+--------+-----------+
|  6 | jingliyang | female |  18 | 2011-02-11 | teacher | NULL         |  9000.00 |    401 |         1 |
|  7 | jinxin     | male   |  18 | 1900-03-01 | teacher | NULL         | 30000.00 |    401 |         1 |
|  8 | xiaomage   | male   |  48 | 2010-11-11 | teacher | NULL         | 10000.00 |    401 |         1 |
|  9 | 歪歪       | female |  48 | 2015-03-11 | sale    | NULL         |  3000.13 |    402 |         2 |
| 10 | 丫丫       | female |  38 | 2010-11-01 | sale    | NULL         |  2000.35 |    402 |         2 |
+----+------------+--------+-----+------------+---------+--------------+----------+--------+-----------+
rows in set (0.00 sec)
# 第3页数据
mysql> select * from  employee limit 10,5;
+----+-----------+--------+-----+------------+-----------+--------------+----------+--------+-----------+
| id | name      | sex    | age | hire_date  | post      | post_comment | salary   | office | depart_id |
+----+-----------+--------+-----+------------+-----------+--------------+----------+--------+-----------+
| 11 | 丁丁      | female |  18 | 2011-03-12 | sale      | NULL         |  1000.37 |    402 |         2 |
| 12 | 星星      | female |  18 | 2016-05-13 | sale      | NULL         |  3000.29 |    402 |         2 |
| 13 | 格格      | female |  28 | 2017-01-27 | sale      | NULL         |  4000.33 |    402 |         2 |
| 14 | 张野      | male   |  28 | 2016-03-11 | operation | NULL         | 10000.13 |    403 |         3 |
| 15 | 程咬金    | male   |  18 | 1997-03-12 | operation | NULL         | 20000.00 |    403 |         3 |
+----+-----------+--------+-----+------------+-----------+--------------+----------+--------+-----------+
rows in set (0.00 sec)

小练习答案
练习,分页显示,每页5条

 

              多表查询               

   创建两张表 , 部门表(department) , 员工表(employee).

#创建表
create table department(
id int,
name varchar(20)
);

create table employee(
id int primary key auto_increment,
name varchar(20),
sex enum('male','female') not null default 'male',
age int,
dep_id int
);

#插入数据
insert into department values
(200,'技术部门'),
(201,'人力济源'),
(202,''销售),
(203,'运营');

insert into employee values(name,sex,age,dep_id ) values
('egon','male',18,200),
('alex','female',48,201),
('wupeiqi','male',38,201),
('yuanhao','female',28,202),
('nvshen','male',18,200),
('xiaomage','female',18,204);

#查看表结构和数据
# 查看表结构和数据
mysql> desc department;
+-------+-------------+------+-----+---------+-------+
| Field | Type        | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id    | int(11)     | YES  |     | NULL    |       |
| name  | varchar(20) | YES  |     | NULL    |       |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.19 sec)

mysql> desc employee;
+--------+-----------------------+------+-----+---------+----------------+
| Field  | Type                  | Null | Key | Default | Extra          |
+--------+-----------------------+------+-----+---------+----------------+
| id     | int(11)               | NO   | PRI | NULL    | auto_increment |
| name   | varchar(20)           | YES  |     | NULL    |                |
| sex    | enum('male','female') | NO   |     | male    |                |
| age    | int(11)               | YES  |     | NULL    |                |
| dep_id | int(11)               | YES  |     | NULL    |                |
+--------+-----------------------+------+-----+---------+----------------+
5 rows in set (0.01 sec)

mysql> select * from department;
+------+--------------+
| id   | name         |
+------+--------------+
|  200 | 技术         |
|  201 | 人力资源     |
|  202 | 销售         |
|  203 | 运营         |
+------+--------------+
4 rows in set (0.02 sec)

mysql> select * from employee;
+----+----------+--------+------+--------+
| id | name     | sex    | age  | dep_id |
+----+----------+--------+------+--------+
|  1 | egon     | male   |   18 |    200 |
|  2 | alex     | female |   48 |    201 |
|  3 | wupeiqi  | male   |   38 |    201 |
|  4 | yuanhao  | female |   28 |    202 |
|  5 | nvshen   | male   |   18 |    200 |
|  6 | xiaomage | female |   18 |    204 |
+----+----------+--------+------+--------+
6 rows in set (0.00 sec)

      注意 : 在两张表中,发现department 表中 id=203 部门在employee没有对应的员工,发现 employee 中 id=6 的员工在 department 表中没有对应的关系.

 

      多表连接查询      

     外链接语法 : ********

select 字段列表
    from 表1 inner | left |right   join  表2
    on 表1.字段 = 表2.字段;

# inner join     内链接
# left join    左链接
# right join  又链接

  (1) . 交叉链接 : 不适用任何匹配条件(会生成 笛卡尔积--映射)

mysql> select * from employee,department;
+----+----------+--------+------+--------+------+--------------+
| id | name     | sex    | age  | dep_id | id   | name         |
+----+----------+--------+------+--------+------+--------------+
|  1 | egon     | male   |   18 |    200 |  200 | 技术         |
|  1 | egon     | male   |   18 |    200 |  201 | 人力资源     |
|  1 | egon     | male   |   18 |    200 |  202 | 销售         |
|  1 | egon     | male   |   18 |    200 |  203 | 运营         |
|  2 | alex     | female |   48 |    201 |  200 | 技术         |
|  2 | alex     | female |   48 |    201 |  201 | 人力资源     |
|  2 | alex     | female |   48 |    201 |  202 | 销售         |
|  2 | alex     | female |   48 |    201 |  203 | 运营         |
|  3 | wupeiqi  | male   |   38 |    201 |  200 | 技术         |
|  3 | wupeiqi  | male   |   38 |    201 |  201 | 人力资源     |
|  3 | wupeiqi  | male   |   38 |    201 |  202 | 销售         |
|  3 | wupeiqi  | male   |   38 |    201 |  203 | 运营         |
|  4 | yuanhao  | female |   28 |    202 |  200 | 技术         |
|  4 | yuanhao  | female |   28 |    202 |  201 | 人力资源     |
|  4 | yuanhao  | female |   28 |    202 |  202 | 销售         |
|  4 | yuanhao  | female |   28 |    202 |  203 | 运营         |
|  5 | nvshen   | male   |   18 |    200 |  200 | 技术         |
|  5 | nvshen   | male   |   18 |    200 |  201 | 人力资源     |
|  5 | nvshen   | male   |   18 |    200 |  202 | 销售         |
|  5 | nvshen   | male   |   18 |    200 |  203 | 运营         |
|  6 | xiaomage | female |   18 |    204 |  200 | 技术         |
|  6 | xiaomage | female |   18 |    204 |  201 | 人力资源     |
|  6 | xiaomage | female |   18 |    204 |  202 | 销售         |
|  6 | xiaomage | female |   18 |    204 |  203 | 运营         |
View Code

 

  (2) . 内链接 : 只链接匹配的行

#找两张表共有的部分,相当于利用条件从笛卡尔积结果中筛选出匹配的结果.
#department 没有 204 这个部门,因而employee 表中关于 204这条的员工信息没有匹配出来
mysql> select employee.id,employee.name,employee.age,employee.sex,department.name from employee inner join department on employee.dep_id=department.id;
+----+---------+------+--------+--------------+
| id | name    | age  | sex    | name         |
+----+---------+------+--------+--------------+
|  1 | egon    |   18 | male   | 技术         |
|  2 | alex    |   48 | female | 人力资源     |
|  3 | wupeiqi |   38 | male   | 人力资源     |
|  4 | yuanhao |   28 | female | 销售         |
|  5 | nvshen  |   18 | male   | 技术         |
+----+---------+------+--------+--------------+
5 rows in set (0.00 sec)

#上述sql等同于
mysql> select employee.id,employee.name,employee.age,employee.sex,department.name from employee,department where employee.dep_id=department.id;

#employee.id,employee.name,employee.age,employee.sex,department.name 相当于 * 

 

  (3) . 左链接 : 优先显示左表的全部内容

#以左表为准,即找出所有员工信息,当然包括没有部门的员工
#本质就是:在内连接的基础上增加左边有,右边没有的结果
mysql> select employee.id,employee.name,department.name as depart_name from employee left join department on employee.dep_id=department.id;
+----+----------+--------------+
| id | name     | depart_name  |
+----+----------+--------------+
|  1 | egon     | 技术         |
|  5 | nvshen   | 技术         |
|  2 | alex     | 人力资源     |
|  3 | wupeiqi  | 人力资源     |
|  4 | yuanhao  | 销售         |
|  6 | xiaomage | NULL         |
+----+----------+--------------+
6 rows in set (0.00 sec)

 

  (4) . 右链接 : 优先显示右表的全部记录 

#以右表为准,即找出所有部门信息,包括没有员工的部门
#本质就是:在内连接的基础上增加右边有,左边没有的结果
mysql> select employee.id,employee.name,department.name as depart_name from employee right join department on employee.dep_id=department.id;
+------+---------+--------------+
| id   | name    | depart_name  |
+------+---------+--------------+
|    1 | egon    | 技术         |
|    2 | alex    | 人力资源     |
|    3 | wupeiqi | 人力资源     |
|    4 | yuanhao | 销售         |
|    5 | nvshen  | 技术         |
| NULL | NULL    | 运营         |
+------+---------+--------------+
6 rows in set (0.00 sec)

 

  (5) . 全外链接 : 显示左右两个表的全部记录 

#外连接:在内连接的基础上增加左边有右边没有的和右边有左边没有的结果
#注意:mysql不支持全外连接 full JOIN
#强调:mysql可以使用此种方式间接实现全外连接
语法:select * from employee left join department on employee.dep_id = department.id 
       union all
      select * from employee right join department on employee.dep_id = department.id;

 mysql> select * from employee left join department on employee.dep_id = department.id
          union
        select * from employee right join department on employee.dep_id = department.id
           ;
+------+----------+--------+------+--------+------+--------------+
| id   | name     | sex    | age  | dep_id | id   | name         |
+------+----------+--------+------+--------+------+--------------+
|    1 | egon     | male   |   18 |    200 |  200 | 技术         |
|    5 | nvshen   | male   |   18 |    200 |  200 | 技术         |
|    2 | alex     | female |   48 |    201 |  201 | 人力资源     |
|    3 | wupeiqi  | male   |   38 |    201 |  201 | 人力资源     |
|    4 | yuanhao  | female |   28 |    202 |  202 | 销售         |
|    6 | xiaomage | female |   18 |    204 | NULL | NULL         |
| NULL | NULL     | NULL   | NULL |   NULL |  203 | 运营         |
+------+----------+--------+------+--------+------+--------------+
7 rows in set (0.01 sec)

#注意 union与union all的区别:union会去掉相同的纪录

       总结 : 

外链接 : 
    内链接 : 只链接匹配的行
    select * from employee inner join department on employee.dep_id = department.id;
    左链接 : 优先显示左表中的记录
    select * from employee left join department on employee.dep_id = department.id;
    右链接 : 优先显示右表中的内容
    select * from employee right join department on employee.dep_id = department.id;
    全外链接 : 
    select * from employee left join department on employee.dep_id = department.id
        union
    select * from employee right join department on employee.dep_id = department.id;
View Code

 

       符合条件链接查询        

示例1 : 以内连接的方式查询 employee 表和department表,并且 employee表中的age字段值必须大于25,即找出年龄大于25岁的员工以及员工所在的部门.

select employee.name,department.name from
 employee inner join department 
on employee.dep_di = department.id
 where arg > 25;

示例2 : 以内链接的方式查询employee和department表,且以arg字段升序的方式显示

#方法一 : 
select employee.id,employee.name,employee.age,department.name from employee inner join department 
on employee.dep_di = department.id 
where age > 25 
order by age asc;

#方法二 :  简单点
select employee.id,employee.name,employee.age,department.name from employee,department
    where employee.dep_id = department.id
    and age > 25
    order by age asc;

 

          子查询         

#1 . 子查询是将一个查询语句嵌套在另一个查询语句中.
#2 . 内层查询语句的查询结果,可以为外层查询语句提供条件.
#3 . 子查询中可以包含: in,not in , any , exists , not exists 等关键字.
#4 . 还可以包含比较运算符 : = , != ,> , < ......

 

  (1) . 带in关键字的子查询

#查询平均年龄在25岁以上的部门名
select id,name from department
    where id in 
        (select dep_id from employee group by dep_id having avg(age) > 25);
# 查看技术部员工姓名
select name from employee
    where dep_id in 
        (select id from department where name='技术');
#查看不足1人的部门名
select name from department
    where id not in 
        (select dep_id from employee group by dep_id);
    #先查询人数,让人数不属于1

 

  (2) . 带比较运算符的子查询

#比较运算符:=、!=、>、>=、<、<=、<>
#查询大于所有人平均年龄的员工名与年龄
mysql> select name,age from employee where age > (select avg(age) from employee);
+---------+------+
| name    | age  |
+---------+------+
| alex    |   48 |
| wupeiqi |   38 |
+---------+------+

#查询大于部门内平均年龄的员工名、年龄
思路:
      (1)先对员工表(employee)中的人员分组(group by),查询出dep_id以及平均年龄。
       (2)将查出的结果作为临时表,再对根据临时表的dep_id和employee的dep_id作为筛选条件将employee表和临时表进行内连接。
       (3)最后再将employee员工的年龄是大于平均年龄的员工名字和年龄筛选。



mysql> select t1.name,t1.age from employee as t1
             inner join
            (select dep_id,avg(age) as avg_age from employee group by dep_id) as t2
            on t1.dep_id = t2.dep_id
            where t1.age > t2.avg_age;
+------+------+
| name | age  |
+------+------+
| alex |   48 |

 

  (3) . 带 exists 关键字的子查询

#EXISTS关字键字表示存在。在使用EXISTS关键字时,内层查询语句不返回查询的记录。而是返回一个真假值。True或False
#当返回True时,外层查询语句将进行查询;当返回值为False时,外层查询语句不进行查询
#department表中存在dept_id=203,Ture
mysql> select * from employee  where exists (select id from department where id=200);
+----+----------+--------+------+--------+
| id | name     | sex    | age  | dep_id |
+----+----------+--------+------+--------+
|  1 | egon     | male   |   18 |    200 |
|  2 | alex     | female |   48 |    201 |
|  3 | wupeiqi  | male   |   38 |    201 |
|  4 | yuanhao  | female |   28 |    202 |
|  5 | nvshen   | male   |   18 |    200 |
|  6 | xiaomage | female |   18 |    204 |
+----+----------+--------+------+--------+
#department表中存在dept_id=205,False
mysql> select * from employee  where exists (select id from department where id=204);
Empty set (0.00 sec)

 

    练习 : 查询每个部门最新入职的员工 

#创建表
create table employee(
id int not null unique auto_increment,
name varchar(20) not null,
sex enum('male','female') not null default 'male', #大部分是男的
age int(3) unsigned not null default 28,
hire_date date not null,
post varchar(50),
post_comment varchar(100),
salary double(15,2),
office int, #一个部门一个屋子
depart_id int
);


#查看表结构
mysql> desc employee;
+--------------+-----------------------+------+-----+---------+----------------+
| Field        | Type                  | Null | Key | Default | Extra          |
+--------------+-----------------------+------+-----+---------+----------------+
| id           | int(11)               | NO   | PRI | NULL    | auto_increment |
| name         | varchar(20)           | NO   |     | NULL    |                |
| sex          | enum('male','female') | NO   |     | male    |                |
| age          | int(3) unsigned       | NO   |     | 28      |                |
| hire_date    | date                  | NO   |     | NULL    |                |
| post         | varchar(50)           | YES  |     | NULL    |                |
| post_comment | varchar(100)          | YES  |     | NULL    |                |
| salary       | double(15,2)          | YES  |     | NULL    |                |
| office       | int(11)               | YES  |     | NULL    |                |
| depart_id    | int(11)               | YES  |     | NULL    |                |
+--------------+-----------------------+------+-----+---------+----------------+

#插入记录
#三个部门:教学,销售,运营
insert into employee(name,sex,age,hire_date,post,salary,office,depart_id) values
('egon','male',18,'20170301','老男孩驻沙河办事处外交大使',7300.33,401,1), #以下是教学部
('alex','male',78,'20150302','teacher',1000000.31,401,1),
('wupeiqi','male',81,'20130305','teacher',8300,401,1),
('yuanhao','male',73,'20140701','teacher',3500,401,1),
('liwenzhou','male',28,'20121101','teacher',2100,401,1),
('jingliyang','female',18,'20110211','teacher',9000,401,1),
('jinxin','male',18,'19000301','teacher',30000,401,1),
('成龙','male',48,'20101111','teacher',10000,401,1),

('歪歪','female',48,'20150311','sale',3000.13,402,2),#以下是销售部门
('丫丫','female',38,'20101101','sale',2000.35,402,2),
('丁丁','female',18,'20110312','sale',1000.37,402,2),
('星星','female',18,'20160513','sale',3000.29,402,2),
('格格','female',28,'20170127','sale',4000.33,402,2),

('张野','male',28,'20160311','operation',10000.13,403,3), #以下是运营部门
('程咬金','male',18,'19970312','operation',20000,403,3),
('程咬银','female',18,'20130311','operation',19000,403,3),
('程咬铜','male',18,'20150411','operation',18000,403,3),
('程咬铁','female',18,'20140512','operation',17000,403,3)
;
#答案
select * from employee as t1
inner join
(select post,max(hire_date) as new_date from employee group by post) as t2
on t1.post=t2.post
where t1.hire_date=t2.new_date;

posted on 2018-10-15 18:02  二十四桥_明月夜  阅读(376)  评论(0编辑  收藏  举报

导航