欢迎来到夜的世界

莫听穿林打叶声,何妨吟啸且徐行。竹杖芒鞋轻胜马,谁怕?一蓑烟雨任平生.料峭春风吹酒醒,微冷,山头斜照却相迎。回首向来萧瑟处,归去,也无风雨也无晴。
扩大
缩小

python 把几个DataFrame合并成一个DataFrame——merge,append,join,conca

1 . merge

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False)
left︰ 对象
right︰ 另一个对象
on︰ 要加入的列 (名称)。必须在左、 右综合对象中找到。如果不能通过 left_index 和 right_index 是假,将推断 DataFrames 中的列的交叉点为连接键
left_on︰ 从左边的综合使用作为键列。可以是列名或数组的长度等于长度综合
right_on︰ 从正确的综合,以用作键列。可以是列名或数组的长度等于长度综合
left_index︰ 如果为 True,则使用索引 (行标签) 从左综合作为其联接键。在与多重 (层次) 的综合,级别数必须匹配联接键从右综合的数目
right_index︰ 相同用法作为正确综合 left_index
how︰ 之一 '''''外在''内部'。默认为内部。每个方法的更详细说明请参阅︰
sort︰ 综合通过联接键按字典顺序对结果进行排序。默认值为 True,设置为 False将提高性能极大地在许多情况下
suffixes︰ 字符串后缀并不适用于重叠列的元组。默认值为 ('_x''_y')。
copy︰ 即使重新索引是不必要总是从传递的综合对象,复制的数据 (默认值True)。在许多情况下不能避免,但可能会提高性能 / 内存使用情况。可以避免复制上述案件有些病理但尽管如此提供此选项。
indicator︰ 将列添加到输出综合呼吁 _merge 与信息源的每一行。_merge 是绝对类型,并对观测其合并键只出现在 '' 的综合,观测其合并键只会出现在 '正确' 的综合,和两个如果观察合并关键发现在两个 right_only left_only 的值。

  1) . result = pd.merge(left, right, on='key')

  2) . result = pd.merge(left, right, on=['key1', 'key2'])

  3) . result = pd.merge(left, right, how='left', on=['key1', 'key2'])

  4) . result = pd.merge(left, right, how='right', on=['key1', 'key2'])

  5) . result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

2 . append

  1) . result = df1.append(df2)

 

 

  2) . result = df1.append(df4)

  3) . result = df1.append([df2, df3])

  4) . result = df1.append(df4, ignore_index=True)

 

3 . join

left.join(right, on=key_or_keys)
pd.merge(left, right, left_on=key_or_keys, right_index=True,
      how='left', sort=False)

1) . result = left.join(right, on='key')

2) . result = left.join(right, on=['key1', 'key2'])

3) . result = left.join(right, on=['key1', 'key2'], how='inner')

4 . concat

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
          keys=None, levels=None, names=None, verify_integrity=False,
          copy=True)
objs︰ 一个序列或系列、 综合或面板对象的映射。如果字典中传递,将作为键参数,使用排序的键,除非它传递,在这种情况下的值将会选择 (见下文)。任何没有任何反对将默默地被丢弃,除非他们都没有在这种情况下将引发 ValueError。
axis: {0,1,...},默认值为 0。要连接沿轴。
join: {'内部'''},默认 ''。如何处理其他 axis(es) 上的索引。联盟内、 外的交叉口。
ignore_index︰ 布尔值、 默认 False。如果为 True,则不要串联轴上使用的索引值。由此产生的轴将标记 0,...,n-1。这是有用的如果你串联串联轴没有有意义的索引信息的对象。请注意在联接中仍然受到尊重的其他轴上的索引值。
join_axes︰ 索引对象的列表。具体的指标,用于其他 n-1 轴而不是执行内部/外部设置逻辑。
keys︰ 序列,默认为无。构建分层索引使用通过的键作为最外面的级别。如果多个级别获得通过,应包含元组。
levels︰ 列表的序列,默认为无。具体水平 (唯一值) 用于构建多重。否则,他们将推断钥匙。
names︰ 列表中,默认为无。由此产生的分层索引中的级的名称。
verify_integrity︰ 布尔值、 默认 False。检查是否新的串联的轴包含重复项。这可以是相对于实际数据串联非常昂贵。
副本︰ 布尔值、 默认 True。如果为 False,请不要,不必要地复制数据。
frames = [df1, df2, df3]
result = pd.concat(frames)

result = pd.concat(frames, keys=['x', 'y', 'z'])
result.ix['y']

result = pd.concat([df1, df4], axis=1)

result = pd.concat([df1, df4], axis=1, join='inner')

result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

result = pd.concat([df1, df4], ignore_index=True)

 

posted on 2020-09-03 18:00  二十四桥_明月夜  阅读(2184)  评论(0编辑  收藏  举报

导航