实验2 类和对象_基础编程1

实验任务一

代码

t.h

 1 #pragma once
 2 
 3 #include <string>
 4 
 5 // 类T: 声明
 6 class T {
 7 // 对象属性、方法
 8 public:
 9     T(int x = 0, int y = 0);   // 普通构造函数
10     T(const T &t);  // 复制构造函数
11     T(T &&t);       // 移动构造函数
12     ~T();           // 析构函数
13 
14     void adjust(int ratio);      // 按系数成倍调整数据
15     void display() const;           // 以(m1, m2)形式显示T类对象信息
16 
17 private:
18     int m1, m2;
19 
20 // 类属性、方法
21 public:
22     static int get_cnt();          // 显示当前T类对象总数
23 
24 public:
25     static const std::string doc;       // 类T的描述信息
26     static const int max_cnt;           // 类T对象上限
27 
28 private:
29     static int cnt;         // 当前T类对象数目
30 
31 // 类T友元函数声明
32     friend void func();
33 };
34 
35 // 普通函数声明
36 void func();

t.cpp

 1 // 类T: 实现
 2 // 普通函数实现
 3 
 4 #include "t.h"
 5 #include <iostream>
 6 #include <string>
 7 
 8 using std::cout;
 9 using std::endl;
10 using std::string;
11 
12 // static成员数据类外初始化
13 const std::string T::doc{"a simple class sample"};
14 const int T::max_cnt = 999;
15 int T::cnt = 0;
16 
17 
18 // 对象方法
19 T::T(int x, int y): m1{x}, m2{y} { 
20     ++cnt; 
21     cout << "T constructor called.\n";
22 } 
23 
24 T::T(const T &t): m1{t.m1}, m2{t.m2} {
25     ++cnt;
26     cout << "T copy constructor called.\n";
27 }
28 
29 T::T(T &&t): m1{t.m1}, m2{t.m2} {
30     ++cnt;
31     cout << "T move constructor called.\n";
32 }    
33 
34 T::~T() {
35     --cnt;
36     cout << "T destructor called.\n";
37 }           
38 
39 void T::adjust(int ratio) {
40     m1 *= ratio;
41     m2 *= ratio;
42 }    
43 
44 void T::display() const {
45     cout << "(" << m1 << ", " << m2 << ")" ;
46 }     
47 
48 // 类方法
49 int T::get_cnt() {
50    return cnt;
51 }
52 
53 // 友元
54 void func() {
55     T t5(42);
56     t5.m2 = 2049;
57     cout << "t5 = "; t5.display(); cout << endl;
58 }

task1.cpp

#include "t.h"
#include <iostream>

using std::cout;
using std::endl;

void test();

int main() {
    test();
    cout << "\nmain: \n";
    cout << "T objects'current count: " << T::get_cnt() << endl;
}

void test() {
    cout << "test class T: \n";
    cout << "T info: " << T::doc << endl;
    cout << "T objects'max count: " << T::max_cnt << endl;
    cout << "T objects'current count: " << T::get_cnt() << endl << endl;


    T t1;
    cout << "t1 = "; t1.display(); cout << endl;

    T t2(3, 4);
    cout << "t2 = "; t2.display(); cout << endl;

    T t3(t2);
    t3.adjust(2);
    cout << "t3 = "; t3.display(); cout << endl;

    T t4(std::move(t2));
    cout << "t3 = "; t4.display(); cout << endl;

    cout << "T objects'current count: " << T::get_cnt() << endl;

    func();
}

 

 

编译结果

问题1

不能正确运行。如果去掉 t.h 中的友元声明 friend void func();,程序将无法正确编译。原因是 func() 函数需要访问 T 类的私有成员变量 m2,如果没有友元关系,func() 将无法访问 T 类的私有成员,导致编译错误。

问题2

T 类的构造函数和析构函数如下:

  1. 普通构造函数 T(int x = 0, int y = 0);

    功能:创建一个 T 类的对象,允许用户指定成员变量 m1 和 m2 的初始值,默认为 0。

    调用时机:当使用默认参数或提供具体参数创建对象时,如 T t1; 或 T t2(3, 4);。

    复制构造函数 T(const T &t);

     

    功能:通过已有的 T 类对象来初始化新的对象,实现成员变量的拷贝。

    调用时机:当以现有对象初始化新对象时,如 T t3(t2);,或当对象以值传递方式作为函数参数或返回值时。

    移动构造函数 T(T &&t);

     

    功能:移动资源,而非复制,用于优化临时对象或右值的初始化,减少不必要的拷贝。

    调用时机:当使用 std::move 转换为右值引用,或函数返回临时对象时,如 T t4(std::move(t2));。

    析构函数 ~T();

     

    功能:在对象生命周期结束时执行清理操作,如释放资源、更新静态计数器等。

    调用时机:当对象超出其作用域、被显式删除或程序结束时,系统自动调用析构函数。

总结

构造函数:用于初始化对象的成员变量,分配必要的资源。

析构函数:用于在对象销毁时释放资源,执行必要的清理工作。

问题3

不能正确编译运行。如果将静态成员变量的定义和初始化从 t.cpp 移动到 t.h,会导致链接错误,无法正确编译。

 

实验任务2

代码

complex.cpp

 1 #include "Complex.h"
 2 
 3 const std::string Complex::doc = "a simplified complex class";
 4 
 5 Complex::Complex() : real(0.0), imag(0.0) {}
 6 
 7 Complex::Complex(double real) : real(real), imag(0.0) {}
 8 
 9 Complex::Complex(double real, double imag) : real(real), imag(imag) {}
10 
11 Complex::Complex(const Complex& other) : real(other.real), imag(other.imag) {}
12 
13 double Complex::get_real() const {
14     return real;
15 }
16 
17 double Complex::get_imag() const {
18     return imag;
19 }
20 
21 void Complex::add(const Complex& other) {
22     real += other.real;
23     imag += other.imag;
24 }
25 
26 Complex add(const Complex& c1, const Complex& c2) {
27     return Complex(c1.real + c2.real, c1.imag + c2.imag);
28 }
29 
30 
31 bool is_equal(const Complex& c1, const Complex& c2) {
32     return (c1.real == c2.real) && (c1.imag == c2.imag);
33 }
34 
35 bool is_not_equal(const Complex& c1, const Complex& c2) {
36     return !(is_equal(c1, c2));
37 }
38 
39 void output(const Complex& c) {
40     std::cout << c.real << (c.imag >= 0 ? " + " : " - ") << std::abs(c.imag) << "i";
41 }
42 
43 double abs(const Complex& c) {
44     return std::sqrt(c.real * c.real + c.imag * c.imag);
45 }

main.cpp

 1 #include <iostream>
 2 #include "Complex.h"  
 3 
 4 using std::cout;
 5 using std::endl;
 6 using std::boolalpha;
 7 
 8 void test() {
 9     cout << "类成员测试: " << endl;
10     cout << Complex::doc << endl;
11 
12     cout << endl;
13 
14     cout << "Complex对象测试: " << endl;
15     Complex c1;                
16     Complex c2(3, -4);       
17     const Complex c3(3.5);    
18     Complex c4(c3);            
19 
20     cout << "c1 = "; output(c1); cout << endl;
21     cout << "c2 = "; output(c2); cout << endl;
22     cout << "c3 = "; output(c3); cout << endl;
23     cout << "c4 = "; output(c4); cout << endl;
24     cout << "c4.real = " << c4.get_real() << ", c4.imag = " << c4.get_imag() << endl;
25 
26     cout << endl;
27 
28     cout << "复数运算测试: " << endl;
29     cout << "abs(c2) = " << abs(c2) << endl; 
30     c1.add(c2); 
31     cout << "c1 += c2, c1 = "; output(c1); cout << endl;
32 
33     cout << boolalpha; 
34     cout << "c1 == c2 : " << is_equal(c1, c2) << endl;  
35     cout << "c1 != c3 : " << is_not_equal(c1, c3) << endl; 
36 
37     c4 = add(c2, c3); 
38     cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl;
39 }
40 
41 int main() {
42     test();
43     return 0;
44 }

complex.h

 1 #ifndef COMPLEX_H
 2 #define COMPLEX_H
 3 
 4 #include <iostream>
 5 #include <cmath>
 6 
 7 class Complex {
 8 public:
 9     
10     static const std::string doc;
11 
12     Complex();
13     Complex(double real);
14     Complex(double real, double imag);
15     Complex(const Complex& other);
16 
17     double get_real() const;
18     double get_imag() const;
19     void add(const Complex& other);
20 
21 
22     friend Complex add(const Complex& c1, const Complex& c2);
23     friend bool is_equal(const Complex& c1, const Complex& c2);
24     friend bool is_not_equal(const Complex& c1, const Complex& c2);
25     friend void output(const Complex& c);
26     friend double abs(const Complex& c);
27 
28 private:
29     double real;
30     double imag;
31 };
32 
33 #endif 

编译结果

 

实验任务3

代码

 1 #include <iostream>
 2 #include <complex>
 3 
 4 using std::cout;
 5 using std::endl;
 6 using std::boolalpha;
 7 using std::complex;
 8 
 9 void test() {
10     cout << "标准库模板类comple测试: " << endl;
11     complex<double> c1;
12     complex<double> c2(3, -4);
13     const complex<double> c3(3.5);
14     complex<double> c4(c3);
15 
16     cout << "c1 = " << c1 << endl;
17     cout << "c2 = " << c2 << endl;
18     cout << "c3 = " << c3 << endl;
19     cout << "c4 = " << c4 << endl;
20     cout << "c4.real = " << c4.real() << ", c4.imag = " << c4.imag() << endl;
21     cout << endl;
22 
23     cout << "复数运算测试: " << endl;
24     cout << "abs(c2) = " << abs(c2) << endl;
25     c1 += c2;
26     cout << "c1 += c2, c1 = " << c1 << endl;
27     cout << boolalpha;
28     cout << "c1 == c2 : " << (c1 == c2) << endl;
29     cout << "c1 != c3 : " << (c1 != c3) << endl;
30     c4 = c2 + c3;
31     cout << "c4 = c2 + c3, c4 = " << c4 << endl;
32 }
33 
34 int main() {
35     test();
36 }

编译结果

 思考

构造函数:

默认构造函数:

  •  

    complex<double> c1;

    创建了一个默认的复数对象 c1,其实部和虚部均为 0。

     

    带实部和虚部的构造函数:

     

    complex<double> c2(3, -4);

    创建了一个复数对象 c2,实部为 3,虚部为 -4。

     

    仅带实部的构造函数:

     

    const complex<double> c3(3.5);

    创建了一个常量复数对象 c3,实部为 3.5,虚部为 0。

     

    复制构造函数:

     

    complex<double> c4(c3);

    使用已有的复数对象 c3 初始化新的复数对象 c4。

     

    成员函数:

     

    获取实部和虚部:

    c4.real(); c4.imag();

    使用 real() 和 imag() 成员函数获取复数的实部和虚部。

    算术运算符重载:

     

    复数加法:

    c1 += c2; c4 = c2 + c3;

    使用了 operator+= 和 operator+ 进行复数的加法运算。

    比较运算符重载:

     

    相等和不等比较:

    c1 == c2; c1 != c3;

    使用了 operator== 和 operator!= 进行复数的比较。

    非成员函数:

     

    求复数的模(绝对值):

    abs(c2);

    使用标准库提供的 abs 函数计算复数的模。

    输出运算符重载:

     

    输出复数对象:

    cout << c1;

    使用了 operator<< 将复数对象直接输出到控制台面

对比任务2:

1.代码简洁性:使用标准库complex 类,代码更加简洁,主要得益于运算符的重载,直接使用 +, +=, ==, != 等运算符,而不需要调用额外的函数。

 

输出方便: 标准库已经重载了输出运算符 <<,可以直接输出复数对象,而自定义类需要编写专门的 output 函数。

 

命名规范: 标准库的成员函数命名更为简洁,如 real() 和 imag(),相比自定义类的 get_real() 和 get_imag() 更为简练。

2.启发和思考:

 

运算符重载的重要性: 标准库 complex 类通过重载算术和比较运算符,使得复数的运算和比较变得直观且符合数学表达习惯。这提高了代码的可读性和可维护性。

 

友元函数 vs. 成员函数: 自定义的 Complex 类中,很多操作是通过友元函数实现的,而标准库 complex 类更多地使用成员函数和运算符重载。这提醒我们,在设计类时,可以充分利用成员函数和运算符重载,减少对友元函数的依赖。

 

输出运算符的重载: 标准库通过重载 << 运算符,直接支持复数对象的输出。自定义类可以借鉴这种设计,使得对象的输出更为方便。

 

实验任务4

 代码

Fraction.h

 1 #ifndef FRACTION_H
 2 #define FRACTION_H
 3 
 4 #include <string>
 5 
 6 class Fraction {
 7 public:
 8     static const std::string doc;
 9 
10     // Constructors
11     Fraction(int up = 0, int down = 1);
12     Fraction(const Fraction &other);
13 
14     // Interface methods
15     int get_up() const;
16     int get_down() const;
17     Fraction negative() const;
18 
19     // Friend functions
20     friend void output(const Fraction &f);
21     friend Fraction add(const Fraction &f1, const Fraction &f2);
22     friend Fraction sub(const Fraction &f1, const Fraction &f2);
23     friend Fraction mul(const Fraction &f1, const Fraction &f2);
24     friend Fraction div(const Fraction &f1, const Fraction &f2);
25 
26 private:
27     int up;
28     int down;
29 
30     void reduce(); // Reduce the fraction to simplest terms
31 };
32 
33 #endif // FRACTION_H

Fraction.cpp

 1 #include "Fraction.h"
 2 #include <iostream>
 3 #include <cstdlib> // For exit()
 4 
 5 using namespace std;
 6 
 7 // Utility function to compute GCD (greatest common divisor)
 8 static int gcd(int a, int b) {
 9     return b == 0 ? a : gcd(b, a % b);
10 }
11 
12 // Initialize the static const doc
13 const string Fraction::doc = "Fraction类 v 0.01版.\n目前仅支持分数对象的构造、输出、加/减/乘/除运算.";
14 
15 // Constructors
16 Fraction::Fraction(int up, int down) : up(up), down(down) {
17     if (down == 0) {
18         cout << "Error: Denominator cannot be zero." << endl;
19         exit(1);
20     }
21     // Handle negative denominators
22     if (down < 0) {
23         this->up = -this->up;
24         this->down = -this->down;
25     }
26     reduce();
27 }
28 
29 Fraction::Fraction(const Fraction &other) : up(other.up), down(other.down) {
30     // No need to reduce, as other should already be reduced
31 }
32 
33 // Interface methods
34 int Fraction::get_up() const {
35     return up;
36 }
37 
38 int Fraction::get_down() const {
39     return down;
40 }
41 
42 Fraction Fraction::negative() const {
43     return Fraction(-up, down);
44 }
45 
46 // Private method to reduce the fraction to simplest terms
47 void Fraction::reduce() {
48     int gcd_val = gcd(abs(up), abs(down));
49     if (gcd_val != 0) {
50         up /= gcd_val;
51         down /= gcd_val;
52     }
53 }
54 
55 // Friend functions
56 void output(const Fraction &f) {
57     if (f.down == 1) {
58         cout << f.up;
59     } else {
60         cout << f.up << "/" << f.down;
61     }
62 }
63 
64 Fraction add(const Fraction &f1, const Fraction &f2) {
65     int numerator = f1.up * f2.down + f2.up * f1.down;
66     int denominator = f1.down * f2.down;
67     return Fraction(numerator, denominator);
68 }
69 
70 Fraction sub(const Fraction &f1, const Fraction &f2) {
71     int numerator = f1.up * f2.down - f2.up * f1.down;
72     int denominator = f1.down * f2.down;
73     return Fraction(numerator, denominator);
74 }
75 
76 Fraction mul(const Fraction &f1, const Fraction &f2) {
77     int numerator = f1.up * f2.up;
78     int denominator = f1.down * f2.down;
79     return Fraction(numerator, denominator);
80 }
81 
82 Fraction div(const Fraction &f1, const Fraction &f2) {
83     if (f2.up == 0) {
84         cout << "Error: Division by zero." << endl;
85         exit(1);
86     }
87     int numerator = f1.up * f2.down;
88     int denominator = f1.down * f2.up;
89     if (denominator < 0) {
90         numerator = -numerator;
91         denominator = -denominator;
92     }
93     return Fraction(numerator, denominator);
94 }

task4.cpp

 1 #include "Fraction.h"
 2 #include <iostream>
 3 
 4 using std::cout;
 5 using std::endl;
 6 
 7 void test1() {
 8     cout << "Fraction类测试: " << endl;
 9     cout << Fraction::doc << endl << endl;
10 
11     Fraction f1(5);
12     Fraction f2(3, -4), f3(-18, 12);
13     Fraction f4(f3);
14     cout << "f1 = "; output(f1); cout << endl;
15     cout << "f2 = "; output(f2); cout << endl;
16     cout << "f3 = "; output(f3); cout << endl;
17     cout << "f4 = "; output(f4); cout << endl;
18     Fraction f5(f4.negative());
19     cout << "f5 = "; output(f5); cout << endl;
20     cout << "f5.get_up() = " << f5.get_up() << ", f5.get_down() = " << f5.get_down() << endl;
21     cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl;
22     cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl;
23     cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl;
24     cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl;
25     cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl;
26 }
27 
28 void test2() {
29     Fraction f6(42, 55), f7(0, 3);
30     cout << "f6 = "; output(f6); cout << endl;
31     cout << "f7 = "; output(f7); cout << endl;
32     cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl;
33 }
34 
35 int main() {
36     cout << "测试1: Fraction类基础功能测试\n";
37     test1();
38     cout << "\n测试2: 分母为0测试: \n";
39     test2();
40     return 0;
41 }

 

 

编译结果

 

 

 实验任务5

代码

account.cpp

 1 #include <bits/stdc++.h>
 2 #include "account.h"
 3 using namespace std;
 4 
 5 double SavingAccount::total=0;
 6 SavingAccount::SavingAccount(int data,int id,double rate)
 7     :id(id),balance(0),rate(rate),lastData(data),accumulation(0)
 8     {
 9         cout<<data<<"\t#"<<id<<"is created"<<endl;
10     }
11     
12 void SavingAccount::record(int data,double amount)
13 {
14     accumulation=accumulate(data);
15     lastData=data;
16     amount=floor(amount*100+0.5)/100;
17     balance+=amount;
18     total+=amount;
19     cout<<data<<"\t#"<<id<<"\t"<<amount<<"\t"<<balance<<endl;
20 }
21 
22 void SavingAccount::deposit(int data,double amount)
23 {
24     record(data,amount);
25 }
26 
27 void SavingAccount::withdraw(int data,double amount)
28 {
29     if (amount>getBalance())
30         cout<<"Error:not enough money"<<endl;
31     else 
32         record(data,-amount);
33 }
34 
35 void SavingAccount::settle(int data)
36 {
37     double interest=accumulate(data)*rate/365;
38     if (interest!=0)
39         record(data,interest);
40     accumulation=0;
41 }
42 void SavingAccount::show() const
43 {
44     cout<<"#"<<id<<"\tBalance:"<<balance;
45 }

account.h

 1 #ifndef __ACCOUNT_H__
 2 #define __ACCOUNT_H__
 3 
 4 class SavingAccount{
 5 private:
 6     int id;
 7     double balance;
 8     double rate;
 9     double lastData;
10     double accumulation;
11     
12     static double total;
13     
14     void record(int data,double amount);
15     double accumulate(int data) const
16     {
17         return accumulation+balance*(data-lastData);
18     }
19 public:
20     SavingAccount(int data,int id,double rate);
21     int getId() const {return id;}
22     double getBalance() const {return balance;}
23     double getRate() const {return rate;}
24     static double getTotal() {return total;}
25     void deposit(int data,double amount);
26     void withdraw(int data,double amount);
27     void settle(int data);
28     void show() const;
29 }; 
30 #endif

task5.cpp

 1 #include "account.h"
 2 #include <iostream>
 3 using namespace std;
 4 
 5 int main ()
 6 {
 7     SavingAccount sa0(1,21325302,0.015);
 8     SavingAccount sa1(1,58320212,0.015);
 9     
10     sa0.deposit(5,5000);
11     sa1.deposit(25,10000);
12     sa0.deposit(45,5500);
13     sa1.deposit(60,4000);
14     
15     sa0.settle(90);
16     sa1.settle(90);
17     
18     sa0.show();cout<<endl;
19     sa1.show();cout<<endl;
20     cout<<"Total:"<<SavingAccount::getTotal()<<endl;
21     return 0;
22 }

编译结果

 

 

改进

接口设计和数据封装

公共方法和数据访问:

方法命名:方法 settle 可以更具描述性,例如改为 calculateInterest 或 applyInterest,以清晰表示其用途。

常量成员函数:确保所有不修改成员变量的方法都被声明为 const,这有助于提高代码的可读性和安全性。

访问控制:所有数据成员都是私有的,这很好地实现了封装。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

posted @ 2024-10-25 16:53  starming  阅读(10)  评论(0编辑  收藏  举报