该文被密码保护。 阅读全文
摘要:
洛谷传送门 CF 传送门 考虑一条 \(1 \to i\) 的路径是否在最小生成树上。 称边权为 \(a\) 的边为轻边,边权为 \(b\) 的边为重边。 轻边若不成环则一定在最小生成树上,因此先把轻边合并,这样形成了若干连通块。 那么如果两点在一个连通块,它们只能通过轻边互达。 同时,因为是树上路 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 若 \(2\min\limits_{i = 1}^m a_i < \max\limits_{i = 1}^n a_i\) 就无解,因为根据排列的性质必然存在 \(yxxxy\) 或两端 \(xxyy\) 的情况,并且若这个条件不满足,就可以构造一组解。 考虑最小化 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 考虑若重排好了 \(a\),如何判断可不可行。显然只用把 \(b\) 排序,把 \(\min(a_{i - 1}, a_i)\) 也排序(定义 \(a_0 = a_{n + 1} = +\infty\)),按顺序逐个判断是否大于即可。 这启示我们将 \(\min( 阅读全文
摘要:
洛谷传送门 CF 传送门 过程相当于是将 \(p\) 重排列。设 \(b_i\) 为 \(p\) 中数为 \(i\) 的位置。考虑当前填的数 \(x\) 贡献的逆序对数,相当于是当前所有已经填入 \(p\) 的数 \(y\),都有 \([b_y > b_x]\) 的贡献。 考虑 \(p_{q_i} 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 首先将 \(a\) 从小到大排序,设 \(p_i\) 为排序后的 \(a_i\) 位于原序列第 \(p_i\) 个位置,\(x_i\) 为要填的排列的第 \(i\) 个数。 设 \(A = \prod\limits_{i = 1}^n (a_i - i + 1)\ 阅读全文
摘要:
洛谷传送门 CF 传送门 发现如果取模中途没有出现 \(0\),则可以 \(x \gets x + 1\)。 由此设 \(f_{i, j}\) 为考虑 \([1, i]\),最后取模得到的范围是 \([0, j]\)。 设最后的结果为 \(x\),中间结果减去 \(x\) 和为 \(y\),那么对答 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 悲,赛时代码赛后被 hack 了。 发现对子段排序不会使排列的字典序变大。因此若存在长度 \(\ge k\) 的递增子段直接输出原排列。 否则答案与原排列的 \(\text{LCP}\) 至少为 \(n - k\)(可以通过对 \([n - k + 1, n]\) 阅读全文
摘要:
啥都不会。自闭了。 A 显然填充 \(1\) 不会影响 \(\text{lcm}\)。 枚举 \(n\) 的互质且 \(\text{lcm} = n\) 的因数,看和是否 \(\le n\) 即可。 B 悲,赛时代码赛后被 hack 了。 发现对子段排序不会使排列的字典序变大。因此若存在长度 \(\ 阅读全文
摘要:
洛谷传送门 CF 传送门 看到 \(a_{a_i}\) 和 \(a_i \in [1, n]\),果断连边 \(i \to a_i\),得到内向基环森林。 那么每次相当于把 \(a_i\) 变成自环,连边 \(i \to a_{a_i}\)。 但是每次操作都改变图的形态很不好办,考虑打标记。 每次 阅读全文