摘要:
洛谷传送门 CF 传送门 看到这种操作乱七八糟不能直接算的题,可以考虑最短路。 对于 \(a, b, c, d, m\) 按位考虑,发现相同的 \((a, b, m)\) 无论如何操作必然还是相同的。 于是考虑对于每个可能的 \((0/1, 0/1, 0/1)\),所有终态有 \((c = 0/1, 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 若图中存在点使得删去它后 \(S, T\) 不连通,那么 A 可以一步获胜。 否则,双方都不会删去一个点使得删去它后会产生一个点使得删去它后 \(S, T\) 不连通。那么到最后图上会剩下两条 \(S \to T\) 的不交路径。此时一方无论如何操作都会使得另一方 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 用 \((x, y)\) 表示 \(Ax + By\),那么这个等价于 SB 树。 那么直接在 SB 树上二分,遍历一遍找到 \(n\) 个点就好了。可以采用类似线段树查询的方式。 于是现在还剩下一个子问题:给定 \(a, b\),求 \(ax + by \le 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 非常妙的题。 先直观感受一下,显然当 \(M\) 大到一定程度后,\([0, M]\) 的所有数都能被取到。考虑 \(V \gets V + Ax + By\),其中 \(V + Ax + By \in [0, M]\)。如果 \(x, y\) 都是正数显然可以取 阅读全文
摘要:
洛谷传送门 AtCoder 传送门 看到和度数有关的(基环)树计数,可以想到 Prufer 序。 如果要计数一棵树,那么答案就是 \(\binom{n - 2}{d_1 - 1, d_2 - 1, \ldots, d_n - 1}\)。因为度数为 \(d\) 的点在 Prufer 序中恰好出现 \( 阅读全文
摘要:
洛谷传送门 首先特判 \(a_i = 0\),然后: \(\begin{aligned} f_k(x) & = \sum\limits_{i = 1}^k |a_i x + b_i| \\ & = \sum\limits_{i = 1}^k a_i |x + \frac{b_i}{a_i}| \en 阅读全文
摘要:
QOJ 传送门 考虑 \(1\) 到其他关键城市的最短路的并是一棵以 \(1\) 为根的外向树,考虑在外向树上从叶子往根 dp。 设 \(f_{u, i, S}\) 为当前在点 \(u\),已经翻修了 \(i\) 条道路,当前已经经过的关键点集合为 \(S\),最短路最大值的最小值。 转移有两种情况 阅读全文
摘要:
QOJ 传送门 考虑从低位向高位 dp,设 \(f_{i, S}\) 为考虑到从低到高第 \(i\) 位,当前每个数超出上界的情况为 \(S\)。 转移可以枚举这一位填的数: 若 \(a_j = 0, r_j = 1\),那么这一位一定不会超出上界; 若 \(a_j = 1, r_j = 0\),那 阅读全文
摘要:
洛谷传送门 CF 传送门 最小交换次数等于 \(n - \text{环数}\)。所以题目要我们统计把 \(p, q\) 补全成排列,连边 \(p_i \to q_i\),环数 \(= i\) 的方案数。 考虑把边根据 \(p_i, q_i\) 的是否已知状态分成四类: \(p \to q\) \(p 阅读全文
摘要:
洛谷传送门 CF 传送门 考虑一个子问题:求从某个点 \(u\) 能到达的点数。 如果要精确地计算出来,最优解法只能是 \(O(\frac{n^2}{w})\) 的 bitset。但是我们还没有利用到题目的性质,我们只需要判断一个点是否至多有一个点互不可达。 考虑拓扑排序的过程,队列里面的点两两互不 阅读全文