AtCoder Grand Contest 012 E Camel and Oases

洛谷传送门

AtCoder 传送门

容易发现跳跃次数为 \(O(\log V)\)。考虑对于跳跃 \(k\) 次后的限制 \(\left\lfloor\frac{V}{2^k}\right\rfloor\),对每个点预处理出不再跳跃能到达的最左和最右的点 \([l_{k, i}, r_{k, i}]\)

于是问题变成了,从第 \(i\) 个区间集选择一个区间 \([a_i, b_i]\),若这些区间的并集是 \([1, n]\),那么这种方案会使得 \([a_0, b_0]\) 能够到达全部点。

\([a_0, b_0]\) 看起来比较烦。先把第 \(0\) 个区间集扔掉。设当前的区间集的集合为 \(U\)\(f_S\) 为从 \(S\) 中的每个区间集选出一个区间能覆盖的最大前缀右端点,同时设 \(g_S\) 为能覆盖的最大后缀的左端点。\(f_S, g_S\) 可以状压 dp 求出。枚举覆盖了一段前缀的集合 \(S\),设 \(T = U \setminus S\),那么 \(T\) 覆盖了一段后缀。

\(f_S + 1 \ge g_T\),那么 \(U\) 满足从每个区间集选出一个区间能覆盖 \([1, n]\),此时就是全部 Possible;否则需要满足 \([f_S + 1, g_T - 1] \subseteq [a_0, b_0] = [l_{0, f_S + 1}, r_{0, f_S + 1}]\)。若 \(r_{0, f_S + 1} + 1 \ge g_T\) 那么 \([l_{0, f_S + 1}, r_{0, f_S + 1}]\) 就能到达全部点。

时间复杂度 \(O((n + V) \log V)\)

code
// Problem: E - Camel and Oases
// Contest: AtCoder - AtCoder Grand Contest 012
// URL: https://atcoder.jp/contests/agc012/tasks/agc012_e
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 200100;

ll n, m, a[maxn], K = -1, b[99], d[maxn], f[maxn * 5], g[maxn * 5];
pii c[20][maxn];

void solve() {
	scanf("%lld%lld", &n, &m);
	for (int i = 1; i <= n; ++i) {
		scanf("%lld", &a[i]);
	}
	ll x = m;
	while (x) {
		b[++K] = x;
		x >>= 1;
	}
	b[++K] = 0;
	reverse(b, b + K + 1);
	for (int k = 0; k <= K; ++k) {
		for (int i = 1, j = 1; i <= n; i = (++j)) {
			while (j < n && a[j + 1] - a[j] <= b[k]) {
				++j;
			}
			for (int l = i; l <= j; ++l) {
				c[k][l] = mkp(i, j);
			}
		}
	}
	for (int S = 0; S < (1 << K); ++S) {
		f[S] = 0;
		g[S] = n + 1;
	}
	for (int S = 0; S < (1 << K); ++S) {
		for (int i = 0; i < K; ++i) {
			if (S & (1 << i)) {
				continue;
			}
			f[S | (1 << i)] = max(f[S | (1 << i)], c[i][f[S] + 1].scd);
			g[S | (1 << i)] = min(g[S | (1 << i)], c[i][g[S] - 1].fst);
		}
	}
	for (int S = 0; S < (1 << K); ++S) {
		int T = (1 << K) - 1 - S;
		if (f[S] + 1 >= g[T]) {
			for (int i = 1; i <= n; ++i) {
				puts("Possible");
			}
			return;
		}
		pii p = c[K][f[S] + 1];
		if (p.scd + 1 >= g[T]) {
			++d[p.fst];
			--d[p.scd + 1];
		}
	}
	for (int i = 1; i <= n; ++i) {
		d[i] += d[i - 1];
		puts(d[i] ? "Possible" : "Impossible");
	}
}

int main() {
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}

posted @ 2024-02-15 21:50  zltzlt  阅读(9)  评论(0编辑  收藏  举报