AtCoder Beginner Contest 224 H Security Camera 2
直接糊一手线性规划对偶板板。
要求:
\[\min \sum A_i l_i + \sum B_i r_i
\]
\[\forall i, j, l_i + r_j \ge C_{i, j}
\]
\[l_i, r_i \ge 0
\]
\[l_i, r_i \in \mathbb{Z}
\]
可以证明 \(l_i, r_i\) 为整数的限制可以去掉,因为取到最优解时 \(l_i, r_i\) 一定顶着整数。
对偶相当于变量和限制互换,\(\min, \max\) 互换,不等式符号改变,变成:
\[\max \sum w_{i, j} C_{i, j}
\]
\[\sum\limits_j w_{i, j} \le A_i
\]
\[\sum\limits_i w_{i, j} \le B_j
\]
我去这不是费用流板板吗。\(w_{i, j}\) 相当于 \(i \to j'\) 的流量,\(C_{i, j}\) 相当于这条边的费用,\(\le A_i\) 和 \(\le B_j\) 的限制相当于和源点与汇点的边的容量。那么:
- 连边 \(S \to i\),容量为 \(A_i\),费用为 \(0\);
- 连边 \(i \to j'\),容量为 \(+\infty\),费用为 \(C_{i, j}\);
- 连边 \(j \to T\),容量为 \(B_i\),费用为 \(0\)。
跑一遍最大费用最大流即可。
最大费用最大流可以把费用全部取反跑最小费用最大流,最后把费用再取反。
code
// Problem: H - Security Camera 2
// Contest: AtCoder - AtCoder Beginner Contest 224
// URL: https://atcoder.jp/contests/abc224/tasks/abc224_h
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 110;
const int maxm = 1000100;
const ll inf = 0x3f3f3f3f3f3f3f3fLL;
ll n, m, a[maxn], b[maxn], c[maxn][maxn];
ll head[maxm], len = 1, S, T, ntot, id[maxn][2];
struct edge {
ll to, next, cap, flow, cost;
} edges[maxm];
inline void add_edge(ll u, ll v, ll c, ll f, ll co) {
edges[++len].to = v;
edges[len].next = head[u];
edges[len].cap = c;
edges[len].flow = f;
edges[len].cost = co;
head[u] = len;
}
struct MCMF {
ll d[maxm], cur[maxm];
bool vis[maxm];
inline void add(ll u, ll v, ll c, ll co) {
add_edge(u, v, c, 0, co);
add_edge(v, u, 0, 0, -co);
}
inline bool spfa() {
queue<int> q;
for (int i = 1; i <= ntot; ++i) {
d[i] = inf;
vis[i] = 0;
}
q.push(S);
vis[S] = 1;
d[S] = 0;
while (q.size()) {
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = head[u]; i; i = edges[i].next) {
edge &e = edges[i];
if (d[e.to] > d[u] + e.cost && e.cap > e.flow) {
d[e.to] = d[u] + e.cost;
if (!vis[e.to]) {
vis[e.to] = 1;
q.push(e.to);
}
}
}
}
return d[T] < inf;
}
ll dfs(ll u, ll a, ll &cost) {
if (u == T || !a) {
return a;
}
vis[u] = 1;
ll flow = 0, f;
for (ll &i = cur[u]; i; i = edges[i].next) {
edge &e = edges[i];
if (!vis[e.to] && d[e.to] == d[u] + e.cost && e.cap > e.flow) {
if ((f = dfs(e.to, min(a, e.cap - e.flow), cost)) > 0) {
cost += f * e.cost;
e.flow += f;
edges[i ^ 1].flow -= f;
flow += f;
a -= f;
if (!a) {
break;
}
}
}
}
vis[u] = 0;
return flow;
}
inline pii solve() {
ll flow = 0, cost = 0;
while (spfa()) {
for (int i = 1; i <= ntot; ++i) {
cur[i] = head[i];
}
flow += dfs(S, inf, cost);
}
return mkp(flow, cost);
}
} solver;
void solve() {
scanf("%lld%lld", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf("%lld", &a[i]);
id[i][0] = ++ntot;
}
for (int i = 1; i <= m; ++i) {
scanf("%lld", &b[i]);
id[i][1] = ++ntot;
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%lld", &c[i][j]);
}
}
S = ++ntot;
T = ++ntot;
for (int i = 1; i <= n; ++i) {
solver.add(S, id[i][0], a[i], 0);
}
for (int i = 1; i <= m; ++i) {
solver.add(id[i][1], T, b[i], 0);
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
solver.add(id[i][0], id[j][1], inf, -c[i][j]);
}
}
pii ans = solver.solve();
printf("%lld\n", -ans.scd);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}