AtCoder Beginner Contest 311 G One More Grid Task
考虑一维怎么做。
因为 \(a_i \ge 1\),所以保持最小值不变的前提下,区间左右端点扩展是更优的。我们使用单调栈求出左边第一个比 \(a_i\) 大的数 \(a_{l_i}\),以及右边第一个比 \(a_i\) 大的数 \(a_{r_i}\),答案即为 \(\max\limits_{i = 1}^n a_i \times (\sum\limits_{j = l_i + 1}^{r_i - 1} a_j)\)。
二维的情况,我们枚举矩形的上下边界 \([x, y]\),令 \(b_i = \min\limits_{j = x}^y a_{j, i}\),就转化成了一维的情况。时间复杂度 \(O(n^3)\)。
code
// Problem: G - One More Grid Task
// Contest: AtCoder - Toyota Programming Contest 2023#4(AtCoder Beginner Contest 311)
// URL: https://atcoder.jp/contests/abc311/tasks/abc311_g
// Memory Limit: 1024 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 310;
int n, m, a[maxn][maxn], b[maxn], stk[maxn], top, L[maxn], R[maxn], c[maxn][maxn];
inline int qsum(int xl, int xr, int yl, int yr) {
return c[xl - 1][yl - 1] + c[xr][yr] - c[xl - 1][yr] - c[xr][yl - 1];
}
void solve() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &a[i][j]);
c[i][j] = c[i - 1][j] + c[i][j - 1] - c[i - 1][j - 1] + a[i][j];
}
}
ll ans = 0;
for (int i = 1; i <= n; ++i) {
for (int k = 1; k <= m; ++k) {
b[k] = a[i][k];
}
for (int j = i; j <= n; ++j) {
for (int k = 1; k <= m; ++k) {
b[k] = min(b[k], a[j][k]);
}
top = 0;
for (int k = 1; k <= m; ++k) {
while (top && b[stk[top]] > b[k]) {
--top;
}
L[k] = (top ? stk[top] + 1 : 1);
stk[++top] = k;
}
top = 0;
for (int k = m; k; --k) {
while (top && b[stk[top]] >= b[k]) {
--top;
}
R[k] = (top ? stk[top] - 1 : m);
stk[++top] = k;
}
for (int k = 1; k <= m; ++k) {
ans = max(ans, 1LL * b[k] * qsum(i, j, L[k], R[k]));
}
}
}
printf("%lld\n", ans);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}