AtCoder Regular Contest 163 D Sum of SCC
怎么连这种相对传统的计数也不会……
考虑换种方式描述强连通分量个数。考虑竞赛图缩点后存在一条极长的链,因此转化为把缩完点后的链劈成左右两个集合,使得左边集合不为空的方案数。
于是我们现在只要统计点集 \(A, B\) 数量,满足 \(A \ne \varnothing, A \cap B = \varnothing, A \cup B = [1, n]\) 且 \(A\) 中的边始终指向 \(B\)。
考虑 dp。设 \(f_{i, j, k}\) 为考虑了 \([1, i]\) 的点,\(|A| = j\),小连到大的边数为 \(k\) 的方案数。转移讨论 \(i + 1\) 分给 \(A\) 还是 \(B\) 即可,枚举对应集合中有多少 \(u \to i + 1\) 的点即可。
时间复杂度 \(O(n^5)\)。
code
// Problem: D - Sum of SCC
// Contest: AtCoder - AtCoder Regular Contest 163
// URL: https://atcoder.jp/contests/arc163/tasks/arc163_d
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 35;
const ll mod = 998244353;
inline ll qpow(ll b, ll p) {
ll res = 1;
while (p) {
if (p & 1) {
res = res * b % mod;
}
b = b * b % mod;
p >>= 1;
}
return res;
}
ll n, m, f[maxn][maxn][maxn * maxn], fac[maxn], ifac[maxn];
inline ll C(ll n, ll m) {
if (n < m || n < 0 || m < 0) {
return 0;
} else {
return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}
}
inline void upd(ll &x, ll y) {
x += y;
(x >= mod) && (x -= mod);
}
void solve() {
scanf("%lld%lld", &n, &m);
fac[0] = 1;
for (int i = 1; i <= n; ++i) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[n] = qpow(fac[n], mod - 2);
for (int i = n - 1; ~i; --i) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
f[0][0][0] = 1;
for (int i = 0; i < n; ++i) {
for (int j = 0; j <= i; ++j) {
for (int k = 0; k <= m; ++k) {
if (!f[i][j][k]) {
continue;
}
for (int l = 0; l <= j; ++l) {
upd(f[i + 1][j + 1][k + l], f[i][j][k] * C(j, l) % mod);
}
for (int l = 0; l <= i - j; ++l) {
upd(f[i + 1][j][k + j + l], f[i][j][k] * C(i - j, l) % mod);
}
}
}
}
ll ans = 0;
for (int i = 1; i <= n; ++i) {
ans = (ans + f[n][i][m]) % mod;
}
printf("%lld\n", ans);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}