AtCoder Beginner Contest 296 Ex Unite
不错的 dp。
考虑按行从上往下 dp,并且把列的连通状态塞进 dp 状态里面。实际上就是塞一个并查集。
判状态合法性就是当一个竖的全黑长条结束后,有没有跟别的列连起来。
code
// Problem: Ex - Unite
// Contest: AtCoder - AtCoder Beginner Contest 296
// URL: https://atcoder.jp/contests/abc296/tasks/abc296_h
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;
typedef vector<int> vi;
const int maxn = 140;
int n, m, ntot, fa[maxn], g[maxn], f[maxn][maxn][500];
char s[maxn][maxn];
map<vi, int> mp;
vi pm[500];
bool vis[10];
inline int ID(vi v) {
if (mp.find(v) != mp.end()) {
return mp[v];
} else {
++ntot;
pm[ntot] = v;
return mp[v] = ntot;
}
}
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
inline void merge(int x, int y) {
x = find(x);
y = find(y);
if (x != y) {
fa[x] = y;
}
}
void solve() {
scanf("%d%d", &n, &m);
int L = 1e9, R = -1;
for (int i = 1; i <= n; ++i) {
scanf("%s", s[i]);
for (int j = 0; j < m; ++j) {
if (s[i][j] == '#') {
L = min(L, i);
R = max(R, i);
}
}
}
if (R == -1) {
puts("0");
return;
}
vi t;
for (int i = 0; i < m; ++i) {
t.pb(i);
}
mems(f, 0x3f);
f[L - 1][0][ID(t)] = 0;
for (int i = L; i <= R; ++i) {
for (int S = 0; S < (1 << m); ++S) {
for (int j = 1; j <= ntot; ++j) {
if (f[i - 1][S][j] > 1e9) {
continue;
}
int sta = 0;
for (int k = 0; k < m; ++k) {
if (s[i][k] == '#') {
sta |= (1 << k);
}
}
for (int T = sta; T < (1 << m); T = (T + 1) | sta) {
bool flag = 0;
mems(vis, 0);
for (int k = 0; k < m; ++k) {
if ((S & T) & (1 << k)) {
vis[pm[j][k]] = 1;
}
}
for (int k = 0; k < m; ++k) {
if ((S & (1 << k)) && !vis[pm[j][k]]) {
flag = 1;
break;
}
}
if (flag) {
continue;
}
for (int k = 0; k < m; ++k) {
fa[k] = k;
}
for (int x = 0; x < m; ++x) {
for (int y = x + 1; y < m; ++y) {
if (pm[j][x] == pm[j][y] && (S & (1 << x)) && (S & (1 << y)) && (T & (1 << x)) && (T & (1 << y))) {
merge(x, y);
}
}
}
for (int k = 0; k + 1 < m; ++k) {
if ((T & (1 << k)) && (T & (1 << (k + 1)))) {
merge(k, k + 1);
}
}
for (int k = 0; k < m; ++k) {
g[k] = m;
}
for (int k = 0; k < m; ++k) {
int x = find(k);
g[x] = min(g[x], k);
}
vi v;
for (int k = 0; k < m; ++k) {
v.pb(g[find(k)]);
}
int nj = ID(v);
f[i][T][nj] = min(f[i][T][nj], f[i - 1][S][j] + __builtin_popcount(T ^ sta));
}
}
}
}
int ans = 1e9;
for (int S = 0; S < (1 << m); ++S) {
for (int i = 1; i <= ntot; ++i) {
if (f[R][S][i] > 1e9) {
continue;
}
int cnt = 0;
for (int j = 0; j < m; ++j) {
if (pm[i][j] == j && (S & (1 << j))) {
++cnt;
}
}
if (cnt == 1) {
ans = min(ans, f[R][S][i]);
}
}
}
printf("%d\n", ans);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}