AtCoder Beginner Contest 242 Ex Random Painting
好久没复习过 min-max 容斥了……
设 \(i\) 被覆盖的时间为 \(t_i\),考虑 min-max 容斥,那么:
\[E(\max\limits_{i \in S} t_i) = \sum\limits_{T \subseteq S \land T \ne \varnothing} (-1)^{|T| - 1} E(\min\limits_{i \in T} t_i)
\]
\(\min\) 是好做的。设有 \(x\) 条线段与 \(T\) 有交,那么 \(E(\min\limits_{i \in T} t_i) = \frac{m}{x}\)。
考虑直接 dp,并且把 \(x\) 塞进状态里。设 \(f_{i, j}\) 表示考虑了 \([1, i]\),钦定 \(i\) 被选,已经有 \(j\) 条线段与 \(T\) 无交的方案数,把容斥系数 \((-1)^{|T| - 1}\) 塞进转移里即可。
时间复杂度 \(O(n^2m)\)。
code
// Problem: Ex - Random Painting
// Contest: AtCoder - AtCoder Beginner Contest 242
// URL: https://atcoder.jp/contests/abc242/tasks/abc242_h
// Memory Limit: 1024 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 410;
const ll mod = 998244353;
inline ll qpow(ll b, ll p) {
ll res = 1;
while (p) {
if (p & 1) {
res = res * b % mod;
}
b = b * b % mod;
p >>= 1;
}
return res;
}
ll n, m, f[maxn][maxn], g[maxn][maxn], h[maxn];
struct node {
ll l, r;
} a[maxn];
void solve() {
scanf("%lld%lld", &n, &m);
for (int i = 1; i <= m; ++i) {
scanf("%lld%lld", &a[i].l, &a[i].r);
++g[a[i].l][a[i].r];
}
for (int i = n; i; --i) {
for (int j = 1; j <= n; ++j) {
g[i][j] += g[i + 1][j] + g[i][j - 1] - g[i + 1][j - 1];
}
}
f[0][0] = mod - 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
for (int k = 0; k < i; ++k) {
if (j >= g[k + 1][i - 1]) {
f[i][j] = (f[i][j] - f[k][j - g[k + 1][i - 1]] + mod) % mod;
}
}
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
if (j >= g[i + 1][n]) {
h[m - j] = (h[m - j] + f[i][j - g[i + 1][n]]) % mod;
}
}
}
ll ans = 0;
for (int i = 1; i <= m; ++i) {
ans = (ans + m * qpow(i, mod - 2) % mod * h[i] % mod) % mod;
}
printf("%lld\n", ans);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}