AtCoder Beginner Contest 249 G Xor Cards

洛谷传送门

AtCoder 传送门

好题。

套路地,考虑枚举最优解的 \(a\) 异或和二进制下与 \(k\)\(\text{LCP}\),设在第 \(i\) 位不同。这样的好处是 \(i\) 之后的位可以随便选。

之后按位贪心确定最优解 \(b\) 的异或和。考虑之前的答案是 \(res\),当前在确定第 \(j\) 位,如何判断 \(res + 2^j\) 可行。

考虑将 \(2^i \left\lfloor\frac{a}{2^i}\right\rfloor\)\(2^j \left\lfloor\frac{b}{2^j}\right\rfloor\) 拼成一个 \(60\) 位的二进制数,把它插入线性基内,判断 \(res + 2^j\) 能否被这些数凑出来即可。

注意最后要检查 \(res\) 是否能被 \(b_i\) 凑出来。

code
// Problem: G - Xor Cards
// Contest: AtCoder - Monoxer Programming Contest 2022(AtCoder Beginner Contest 249)
// URL: https://atcoder.jp/contests/abc249/tasks/abc249_g
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;

struct LinearBasis {
	ll p[65];
	bool fl;
	
	inline void init() {
		fl = 0;
		mems(p, 0);
	}
	
	inline void insert(ll x) {
		for (int i = 59; ~i; --i) {
			if (x & (1LL << i)) {
				if (!p[i]) {
					p[i] = x;
					return;
				}
				x ^= p[i];
			}
		}
		fl = 1;
	}
	
	inline bool check(ll x) {
		if (!x) {
			return fl;
		}
		for (int i = 59; ~i; --i) {
			if (x & (1LL << i)) {
				if (!p[i]) {
					return 0;
				}
				x ^= p[i];
			}
		}
		return 1;
	}
} B;

const int maxn = 1010;

ll n, m, a[maxn], b[maxn];

void solve() {
	scanf("%lld%lld", &n, &m);
	for (int i = 1; i <= n; ++i) {
		scanf("%lld%lld", &a[i], &b[i]);
	}
	ll ans = -1;
	for (int i = 29; i >= -1; --i) {
		if (i >= 0 && ((~m) & (1LL << i))) {
			continue;
		}
		ll k = (i == -1 ? m : (((m ^ (1LL << i)) >> i) << i)), res = 0;
		for (int j = 29; ~j; --j) {
			B.init();
			for (int k = 1; k <= n; ++k) {
				B.insert((((a[k] >> max(0, i)) << max(0, i)) << 30) | ((b[k] >> j) << j));
			}
			if (B.check((k << 30) | (res | (1LL << j)))) {
				res |= (1LL << j);
			}
		}
		B.init();
		for (int k = 1; k <= n; ++k) {
			B.insert((((a[k] >> max(0, i)) << max(0, i)) << 30) | b[k]);
		}
		if (B.check((k << 30) | res)) {
			ans = max(ans, res);
		}
	}
	printf("%lld\n", ans);
}

int main() {
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}

posted @ 2023-06-15 12:57  zltzlt  阅读(12)  评论(0编辑  收藏  举报