AtCoder Beginner Contest 267 Ex Odd Sum
直接暴力跑背包的复杂度太高了,考虑优化。
发现值域很小,对值域从小到大跑背包。设 \(f_i\) 为用奇数个数凑出和为 \(i\) 的方案数,相对地 \(g_i\) 是用偶数个数。设当前枚举到的值为 \(x\),数量为 \(c_x\),那么我们要做的就是:
- \(f_i \times \binom{c_x}{d} \to f_{i + dx}, d \mid 2\);
- \(f_i \times \binom{c_x}{d} \to g_{i + dx}, d \nmid 2\);
- \(g_i \times \binom{c_x}{d} \to f_{i + dx}, d \nmid 2\);
- \(g_i \times \binom{c_x}{d} \to g_{i + dx}, d \mid 2\)。
至此可以观察出卷积形式,NTT 优化。
每次枚举 \(x\),实际上要做 \(4\) 次卷积,\(12\) 次 NTT。直接跑是 \(O(120 m \log m)\) 的,还是过不去。考虑做一些上界的优化,\(f_i, g_i\) 的下标上界设置为 \(\sum\limits_{j=1}^x j \times c_j\),就可以通过了。
code
// Problem: Ex - Odd Sum
// Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267)
// URL: https://atcoder.jp/contests/abc267/tasks/abc267_h
// Memory Limit: 1024 MB
// Time Limit: 4000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 2200100;
const ll mod = 998244353;
const ll G = 3;
inline ll qpow(ll b, ll p) {
ll res = 1;
while (p) {
if (p & 1) {
res = res * b % mod;
}
b = b * b % mod;
p >>= 1;
}
return res;
}
ll n, m, a[15], fac[maxn], ifac[maxn], f[maxn], g[maxn], r[maxn];
inline ll C(ll n, ll m) {
if (n < m || n < 0 || m < 0) {
return 0;
} else {
return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}
}
typedef vector<ll> poly;
inline poly NTT(poly a, int op) {
int n = (int)a.size();
for (int i = 0; i < n; ++i) {
if (i < r[i]) {
swap(a[i], a[r[i]]);
}
}
for (int k = 1; k < n; k <<= 1) {
ll wn = qpow(op == 1 ? G : qpow(G, mod - 2), (mod - 1) / (k << 1));
for (int i = 0; i < n; i += (k << 1)) {
ll w = 1;
for (int j = 0; j < k; ++j, w = w * wn % mod) {
ll x = a[i + j], y = w * a[i + j + k] % mod;
a[i + j] = (x + y) % mod;
a[i + j + k] = (x - y + mod) % mod;
}
}
}
return a;
}
inline poly operator * (poly a, poly b) {
a = NTT(a, 1);
b = NTT(b, 1);
int n = (int)a.size();
for (int i = 0; i < n; ++i) {
a[i] = a[i] * b[i] % mod;
}
a = NTT(a, -1);
ll inv = qpow(n, mod - 2);
for (int i = 0; i < n; ++i) {
a[i] = a[i] * inv % mod;
}
return a;
}
void solve() {
scanf("%lld%lld", &n, &m);
for (int i = 1, x; i <= n; ++i) {
scanf("%d", &x);
++a[x];
}
fac[0] = 1;
for (int i = 1; i <= n; ++i) {
fac[i] = fac[i - 1] * i % mod;
}
ifac[n] = qpow(fac[n], mod - 2);
for (int i = n - 1; ~i; --i) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
f[0] = 1;
ll s = 0;
for (int x = 1; x <= 10; ++x) {
int k = 0;
while ((1 << k) <= min(s, m) + a[x] * x) {
++k;
}
for (int i = 1; i < (1 << k); ++i) {
r[i] = (r[i >> 1] >> 1) | ((i & 1) << (k - 1));
}
poly A(1 << k), B(1 << k);
for (int i = 0; i <= min(s, m); ++i) {
A[i] = f[i];
}
for (int i = 0; i <= a[x] * x; ++i) {
B[i] = ((i % x || (i / x) % 2) ? 0 : C(a[x], i / x));
}
poly r1 = A * B;
A = poly(1 << k);
B = poly(1 << k);
for (int i = 0; i <= min(s, m); ++i) {
A[i] = g[i];
}
for (int i = 0; i <= a[x] * x; ++i) {
B[i] = ((i % x || (i / x) % 2 == 0) ? 0 : C(a[x], i / x));
}
poly r2 = A * B;
A = poly(1 << k);
B = poly(1 << k);
for (int i = 0; i <= min(s, m); ++i) {
A[i] = f[i];
}
for (int i = 0; i <= a[x] * x; ++i) {
B[i] = ((i % x || (i / x) % 2 == 0) ? 0 : C(a[x], i / x));
}
poly r3 = A * B;
A = poly(1 << k);
B = poly(1 << k);
for (int i = 0; i <= min(s, m); ++i) {
A[i] = g[i];
}
for (int i = 0; i <= a[x] * x; ++i) {
B[i] = ((i % x || (i / x) % 2) ? 0 : C(a[x], i / x));
}
poly r4 = A * B;
s += a[x] * x;
for (int i = 0; i <= min(s, m); ++i) {
f[i] = (r1[i] + r2[i]) % mod;
g[i] = (r3[i] + r4[i]) % mod;
}
}
printf("%lld\n", g[m]);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}