AtCoder Beginner Contest 217 G Groups

洛谷传送门

AtCoder 传送门

不妨钦定组之间的顺序是最小值越小的组越靠前,这样可以给每个组按顺序编号。

\(f_{i,j}\) 为考虑了模 \(m\)\(< i\) 的数,目前有 \(j\) 个非空组的方案数。

转移就是枚举模 \(m = i - 1\) 的数新开了 \(k\) 个组,设 \(\le n\) 的数中模 \(m = i - 1\) 的数有 \(t\) 个,有转移:

\[f_{i,j} \gets f_{i-1,j-k} \times \binom{t}{k} \times \binom{j-k}{t-k} \times (t-k)! \]

意思就是从这 \(t\) 个数中选出 \(k\) 个数分到编号 \(j - k + 1 \sim j\) 的组,在已有的 \(j-k\) 个组中选 \(t-k\) 个组给剩下不用新开一组的数放进去,顺序任意。

答案为 \(f_{m,i}\)

时间复杂度 \(O(n^2)\)

code
// Problem: G - Groups
// Contest: AtCoder - AtCoder Beginner Contest 217
// URL: https://atcoder.jp/contests/abc217/tasks/abc217_g
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 5050;
const int N = 5000;
const ll mod = 998244353;

inline ll qpow(ll b, ll p) {
	ll res = 1;
	while (p) {
		if (p & 1) {
			res = res * b % mod;
		}
		b = b * b % mod;
		p >>= 1;
	}
	return res;
}

ll n, m, a[maxn], fac[maxn], ifac[maxn], f[maxn][maxn];

void init() {
	fac[0] = 1;
	for (int i = 1; i <= N; ++i) {
		fac[i] = fac[i - 1] * i % mod;
	}
	ifac[N] = qpow(fac[N], mod - 2);
	for (int i = N - 1; ~i; --i) {
		ifac[i] = ifac[i + 1] * (i + 1) % mod;
	}
}

inline ll C(ll n, ll m) {
	if (n < m || n < 0 || m < 0) {
		return 0;
	} else {
		return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
	}
}

void solve() {
	scanf("%lld%lld", &n, &m);
	f[0][0] = 1;
	for (int i = 1; i <= m; ++i) {
		int t = n / m + (i <= n % m);
		for (int j = 0; j <= n; ++j) {
			for (int k = 0; k <= min(j, t); ++k) {
				f[i][j] = (f[i][j] + f[i - 1][j - k] * C(t, k) % mod * C(j - k, t - k) % mod * fac[t - k] % mod) % mod;
			}
		}
	}
	for (int i = 1; i <= n; ++i) {
		printf("%lld\n", f[m][i]);
	}
}

int main() {
	init();
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}

posted @ 2023-05-09 20:28  zltzlt  阅读(10)  评论(0编辑  收藏  举报