AtCoder Regular Contest 131 D AtArcher
观察可以发现:
- 使每支箭的距离都为 \(D\) 一定不劣;
- 每支箭坐标一定为整数;
- 设最左边的箭坐标为 \(x\),那么 \(x\) 太小时可以把最左边的箭移到最右边,\(x\) 太大时可以把最右边的箭移到最左边。计算可得 \(x\) 的最优取值范围为 \(x \in [-\left\lfloor\frac{ND}{2}\right\rfloor, -\left\lfloor\frac{ND}{2}\right\rfloor + D)\)。
这样枚举 \(x\) 就得到了一个 \(O(mD)\) 做法。
考虑与其单独算每个 \(x\) 的得分,不如把所有 \(x\) 放在一起考虑,单独算每个线段的贡献。预处理出 \((l_i, r_i, v_i)\) 表示坐标落在 \([l_i, r_i)\) 的箭能得 \(v_i\) 分,对于一个固定的 \(x\),差分可得坐标落在这个区间内的箭的数量为:
\[\max(\min(\left\lceil\frac{r_i - x}{D}\right\rceil, n), 0) - \max(\min(\left\lceil\frac{l_i - x}{D}\right\rceil, n), 0)
\]
发现因为 \(x\) 取值区间长度为 \(D\),所以上面式子中左、右项的值最多变一次。二分出极长相同区间后,对这个范围的 \(x\) 的答案区间加上面式子乘上 \(v_i\),可以使用差分。
时间复杂度 \(O(m \log D + D)\)。
code
// Problem: D - AtArcher
// Contest: AtCoder - AtCoder Regular Contest 131
// URL: https://atcoder.jp/contests/arc131/tasks/arc131_d
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 1000100;
ll n, m, K, A, a[maxn], b[maxn], D, d[maxn];
struct node {
ll l, r, x;
node(ll a = 0, ll b = 0, ll c = 0) : l(a), r(b), x(c) {}
} c[maxn];
// [l, r)
inline ll calc(ll t, ll x) {
return x < t ? min((t - x + D - 1) / D, n) : 0;
}
void solve() {
scanf("%lld%lld%lld", &n, &m, &D);
A = -(n * D / 2);
for (int i = 0; i <= m; ++i) {
scanf("%lld", &a[i]);
}
for (int i = 1; i <= m; ++i) {
scanf("%lld", &b[i]);
}
for (int i = m; i >= 2; --i) {
c[++K] = node(-a[i], -a[i - 1], b[i]);
}
c[++K] = node(-a[1], a[1] + 1, b[1]);
for (int i = 2; i <= m; ++i) {
c[++K] = node(a[i - 1] + 1, a[i] + 1, b[i]);
}
for (int i = 1; i <= K; ++i) {
ll L = c[i].l, R = c[i].r, x = c[i].x, p = A;
while (p <= A + D - 1) {
ll l = p, r = A + D - 1, pos = -1, u = calc(L, p), v = calc(R, p);
while (l <= r) {
ll mid = (l + r) >> 1;
if (calc(L, mid) == u && calc(R, mid) == v) {
pos = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
d[p - A + 1] += (v - u) * x;
d[pos + 1 - A + 1] -= (v - u) * x;
p = pos + 1;
}
}
ll ans = 0;
for (int i = 1; i <= D; ++i) {
d[i] += d[i - 1];
ans = max(ans, d[i]);
}
printf("%lld\n", ans);
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}