AtCoder Regular Contest 128 E K Different Values
考虑判断有无解。把序列分成 \(c = \left\lceil\frac{len}{k}\right\rceil\) 段,则 \(\forall a_i \le c\) 且 \(\sum\limits_{i=1}^n [a_i = c] \le ((len - 1) \bmod k) + 1\)。
必要性显然。充分性可以考虑直接构造,不难证明。
考虑如何构造字典序最小。贪心,如果当前不得不填 \(a_i = c\) 的数了,那么找到最小的并且能填的填;否则就直接找最小然后填即可。
感觉挺神奇的贪心题,怎么想到的!
code
// Problem: E - K Different Values
// Contest: AtCoder - Daiwa Securities Co. Ltd. Programming Contest 2021(AtCoder Regular Contest 128)
// URL: https://atcoder.jp/contests/arc128/tasks/arc128_e
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 200100;
int n, m, len, a[maxn], b[maxn], c[maxn];
void solve() {
scanf("%d%d", &n, &m);
mems(c, -0x3f);
int cnt = 0;
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
len += a[i];
}
for (int i = 1; i <= n; ++i) {
if (a[i] > (len + m - 1) / m) {
puts("-1");
return;
}
cnt += (a[i] == (len + m - 1) / m);
}
if (cnt > (len - 1) % m + 1) {
puts("-1");
return;
}
for (int i = 1; i <= len; ++i) {
cnt = 0;
for (int j = 1; j <= n; ++j) {
cnt += (a[j] == (len + m - i) / m);
}
if (cnt == (len - i) % m + 1) {
for (int j = 1; j <= n; ++j) {
if (c[j] + m <= i && a[j] == (len + m - i) / m) {
printf("%d ", j);
--a[j];
c[j] = i;
break;
}
}
} else {
for (int j = 1; j <= n; ++j) {
if (c[j] + m <= i && a[j]) {
printf("%d ", j);
--a[j];
c[j] = i;
break;
}
}
}
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}