CodeForces 1416D Graph and Queries
思路
考虑离线,按时间倒序进行操作,删边变成加边。
然而若按时间倒序进行操作,就不知道哪些点已经 \(p_u = 0\) 了。.
可以按加边的顺序建出 \(\mathrm{Kruskal}\) 重构树。则可以倍增找到在 \(t\) 时刻连通的祖先,它的所有叶子子结点即为在 \(t\) 时刻与 \(u\) 连通的点。
区间求最大值,单点修改,线段树即可。
时间复杂度 \(O(m \log m + (n + q) \log n)\)。
代码
code
/*
p_b_p_b txdy
AThousandSuns txdy
Wu_Ren txdy
Appleblue17 txdy
*/
#include <bits/stdc++.h>
#define pb push_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<int, int> pii;
const int maxn = 500100;
const int logn = 22;
const int inf = 0x3f3f3f3f;
int n, m, q, a[maxn], head[maxn], len, fa[maxn];
int f[maxn][logn], val[maxn];
int times, dfn[maxn], rnk[maxn], mnd[maxn], mxd[maxn];
bool mk[maxn];
pii G[maxn], gg[maxn], tree[maxn << 2];
struct edge {
int to, next;
} edges[maxn << 1];
struct query {
int op, x, t;
} qq[maxn];
void add_edge(int u, int v) {
edges[++len].to = v;
edges[len].next = head[u];
head[u] = len;
}
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
void dfs(int u, int fa) {
bool flag = 1;
mnd[u] = inf;
mxd[u] = -inf;
for (int i = head[u]; i; i = edges[i].next) {
int v = edges[i].to;
if (v == fa) {
continue;
}
f[v][0] = u;
dfs(v, u);
mnd[u] = min(mnd[u], mnd[v]);
mxd[u] = max(mxd[u], mxd[v]);
flag = 0;
}
if (flag) {
mnd[u] = mxd[u] = dfn[u] = ++times;
rnk[times] = u;
}
}
int jump(int x, int k) {
for (int i = 19; ~i; --i) {
if (f[x][i] && val[f[x][i]] <= k) {
x = f[x][i];
}
}
return x;
}
void pushup(int x) {
tree[x] = max(tree[x << 1], tree[x << 1 | 1]);
}
void build(int rt, int l, int r) {
if (l == r) {
tree[rt] = make_pair(a[rnk[l]], l);
return;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
pushup(rt);
}
void update(int rt, int l, int r, int x, int y) {
if (l == r) {
tree[rt].fst = y;
return;
}
int mid = (l + r) >> 1;
if (x <= mid) {
update(rt << 1, l, mid, x, y);
} else {
update(rt << 1 | 1, mid + 1, r, x, y);
}
pushup(rt);
}
pii query(int rt, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) {
return tree[rt];
}
pii res = make_pair(-1e9, -1);
int mid = (l + r) >> 1;
if (ql <= mid) {
res = max(res, query(rt << 1, l, mid, ql, qr));
}
if (qr > mid) {
res = max(res, query(rt << 1 | 1, mid + 1, r, ql, qr));
}
return res;
}
void solve() {
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
}
for (int i = 1; i <= n * 2; ++i) {
fa[i] = i;
}
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &G[i].fst, &G[i].scd);
mk[i] = 1;
}
for (int i = 1; i <= q; ++i) {
scanf("%d%d", &qq[i].op, &qq[i].x);
if (qq[i].op == 2) {
mk[qq[i].x] = 0;
}
}
int tote = 0;
for (int i = 1; i <= m; ++i) {
if (mk[i]) {
gg[++tote] = G[i];
}
}
for (int i = q; i; --i) {
if (qq[i].op == 2) {
gg[++tote] = G[qq[i].x];
} else {
qq[i].t = tote;
}
}
int totn = n;
for (int i = 1; i <= tote; ++i) {
int u = gg[i].fst, v = gg[i].scd;
int x = find(u), y = find(v);
if (x != y) {
int z = ++totn;
fa[x] = fa[y] = z;
add_edge(z, x);
add_edge(z, y);
val[z] = i;
}
}
for (int i = 1; i <= totn; ++i) {
if (fa[i] == i) {
dfs(i, -1);
}
}
for (int j = 1; (1 << j) <= totn; ++j) {
for (int i = 1; i <= totn; ++i) {
f[i][j] = f[f[i][j - 1]][j - 1];
}
}
build(1, 1, n);
for (int i = 1; i <= q; ++i) {
int op = qq[i].op, x = qq[i].x;
if (op == 1) {
int u = jump(x, qq[i].t);
pii res = query(1, 1, n, mnd[u], mxd[u]);
printf("%d\n", res.fst);
update(1, 1, n, res.scd, 0);
}
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}