CodeForces 1305D Kuroni and the Celebration
萌萌交互题。
思路
考虑每次询问两个叶子的 \(\mathrm{LCA}\),若 \(\mathrm{LCA}\) 为两个叶子之一,那么 \(\mathrm{LCA}\) 必为根。
每次询问后需要加进来新的叶子。
若询问 \(\left\lfloor\dfrac{n}{2}\right\rfloor\) 次后仍未找到根,最后剩下的没询问过的点即为跟。
代码
code
/*
p_b_p_b txdy
AThousandSuns txdy
Wu_Ren txdy
Appleblue17 txdy
*/
#include <bits/stdc++.h>
#define pb push_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 1010;
int n, deg[maxn], head[maxn], len;
bool vis[maxn];
struct edge {
int to, next;
} edges[maxn << 1];
void add_edge(int u, int v) {
edges[++len].to = v;
edges[len].next = head[u];
head[u] = len;
}
int ask(int x, int y) {
printf("? %d %d\n", x, y);
fflush(stdout);
scanf("%d", &x);
return x;
}
void solve() {
scanf("%d", &n);
for (int i = 1, u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
add_edge(v, u);
++deg[u];
++deg[v];
}
queue<int> q;
for (int i = 1; i <= n; ++i) {
if (deg[i] == 1) {
q.push(i);
}
}
for (int _ = 0; _ < n / 2; ++_) {
int u1 = q.front();
q.pop();
int u2 = q.front();
q.pop();
int u3 = ask(u1, u2);
if (u3 == u1 || u3 == u2) {
printf("! %d\n", u3);
return;
}
vis[u1] = vis[u2] = 1;
for (int i = head[u1]; i; i = edges[i].next) {
int v = edges[i].to;
if (!vis[v] && (--deg[v]) == 1) {
q.push(v);
}
}
for (int i = head[u2]; i; i = edges[i].next) {
int v = edges[i].to;
if (!vis[v] && (--deg[v]) == 1) {
q.push(v);
}
}
}
for (int i = 1; i <= n; ++i) {
if (!vis[i]) {
printf("! %d\n", i);
return;
}
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}