洛谷 P6125 [JSOI2009] 有趣的游戏
思路
考虑建出 AC 自动机之后 dp
。对于每一个人分别计算它的胜率,设当前计算到第 \(i\) 个人的胜率,设 \(f_u\) 表示当前在 AC 自动机上的 \(u\) 号结点获胜的概率,对 AC 自动机上每个结点 \(u\) 写出它的转移方程:
-
若 \(u\) 为第 \(i\) 个字符串的叶子结点,\(f_u = 1\)。
-
若 \(u\) 为叶子结点但 \(u\) 不为第 \(i\) 个字符串的叶子结点,\(f_u = 0\)。
-
若 \(u\) 不为叶子结点,\(f_u = \sum\limits_{i=0}^m f_{ch_{u,i}} \times \dfrac{p_i}{q_i}\)。
答案即为 \(f_0\)。
发现这个转移是有环的,不能直接转移,因此高斯消元后得出答案。
时间复杂度 \(O(n^2ml + n^4l^3)\)。
代码
code
/*
p_b_p_b txdy
AThousandSuns txdy
Wu_Ren txdy
Appleblue17 txdy
*/
#include <bits/stdc++.h>
#define pb push_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 110;
const ldb EPS = 1e-8;
int n, m, K;
ldb a[maxn][maxn], p[maxn];
char s[maxn];
struct AC {
int tot, ch[maxn][15], fail[maxn], idx[maxn];
void insert(char *s, int id) {
int p = 0;
for (int i = 0; s[i]; ++i) {
if (!ch[p][s[i] - 'A']) {
ch[p][s[i] - 'A'] = ++tot;
}
p = ch[p][s[i] - 'A'];
}
idx[p] = id;
}
void build() {
queue<int> q;
for (int i = 0; i < m; ++i) {
if (ch[0][i]) {
q.push(ch[0][i]);
}
}
while (q.size()) {
int u = q.front();
q.pop();
for (int i = 0; i < m; ++i) {
if (ch[u][i]) {
fail[ch[u][i]] = ch[fail[u]][i];
q.push(ch[u][i]);
} else {
ch[u][i] = ch[fail[u]][i];
}
}
}
}
} ac;
void gauss() {
for (int i = 0; i <= ac.tot; ++i) {
int r = -1;
for (int j = i; j <= ac.tot; ++j) {
if (fabs(a[i][j]) > EPS) {
r = j;
break;
}
}
if (r == -1) {
continue;
}
for (int j = i; j <= ac.tot + 1; ++j) {
swap(a[i][j], a[r][j]);
}
for (int j = i + 1; j <= ac.tot + 1; ++j) {
a[i][j] /= a[i][i];
}
a[i][i] = 1;
for (int j = 0; j <= ac.tot; ++j) {
if (i == j) {
continue;
}
for (int k = i + 1; k <= ac.tot + 1; ++k) {
a[j][k] -= a[j][i] * a[i][k];
}
a[j][i] = 0;
}
}
}
void solve() {
scanf("%d%d%d", &n, &K, &m);
for (int i = 0, x, y; i < m; ++i) {
scanf("%d%d", &x, &y);
p[i] = 1. * x / y;
}
for (int i = 1; i <= n; ++i) {
scanf("%s", s);
ac.insert(s, i);
}
ac.build();
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= ac.tot; ++j) {
for (int k = 0; k <= ac.tot + 1; ++k) {
a[j][k] = 0;
}
}
for (int u = 0; u <= ac.tot; ++u) {
if (ac.idx[u] == i) {
a[u][u] = 1;
a[u][ac.tot + 1] = 1;
} else if (ac.idx[u]) {
a[u][u] = 1;
a[u][ac.tot + 1] = 0;
} else {
a[u][u] = 1;
for (int j = 0; j < m; ++j) {
a[u][ac.ch[u][j]] -= p[j];
}
}
}
gauss();
printf("%.2Lf\n", a[0][ac.tot + 1]);
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}