CodeForces 1702G2 Passable Paths (hard version)
思路
显然如果确定了路径的两个端点 \(x,y\),就可以树剖将树上 \(x\) 到 \(y\) 的路径上的点权值 \(+1\),再判断询问点是否在路径上。
于是钦定深度最大的点为其中一个端点 \(x\),另一个端点 \(y\) 为询问点中不为 \(x\) 的祖先且深度最大的点。如果 \(y\) 不存在说明路径为一条从祖先直接到儿子的链,否则按上面的方法判断即可。
注意特判 \(m = 1\) 的情况。
代码
code
/*
p_b_p_b txdy
AThousandMoon txdy
AThousandSuns txdy
hxy txdy
*/
#include <bits/stdc++.h>
#define pb push_back
#define fst first
#define scd second
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pii;
const int maxn = 200100;
int n, q, head[maxn], len, a[maxn], dfn[maxn], times;
int fa[maxn], sz[maxn], son[maxn], dp[maxn];
int top[maxn], cnt[maxn];
vector<int> G[maxn];
struct edge {
int to, next;
} edges[maxn << 1];
void add_edge(int u, int v) {
edges[++len].to = v;
edges[len].next = head[u];
head[u] = len;
}
int dfs(int u, int f, int d) {
fa[u] = f;
dp[u] = d;
sz[u] = 1;
int maxson = -1;
for (int i = head[u]; i; i = edges[i].next) {
int v = edges[i].to;
if (v == f) {
continue;
}
sz[u] += dfs(v, u, d + 1);
if (sz[v] > maxson) {
son[u] = v;
maxson = sz[v];
}
}
return sz[u];
}
void dfs2(int u, int tp) {
top[u] = tp;
dfn[u] = ++times;
if (!son[u]) {
return;
}
dfs2(son[u], tp);
for (int i = head[u]; i; i = edges[i].next) {
int v = edges[i].to;
if (!dfn[v]) {
dfs2(v, v);
}
}
}
int querylca(int x, int y) {
while (top[x] != top[y]) {
if (dp[top[x]] < dp[top[y]]) {
swap(x, y);
}
x = fa[top[x]];
}
if (dp[x] > dp[y]) {
swap(x, y);
}
return x;
}
const int logn = 20;
int ff[maxn][logn], c[maxn];
bool cmp(int a, int b) {
return dp[a] > dp[b];
}
int jump(int x, int y) {
for (int j = 0; j <= 19; ++j) {
if (y & (1 << j)) {
x = ff[x][j];
}
}
return x;
}
void update(int x, int d) {
for (int i = x; i <= n; i += (i & (-i))) {
c[i] += d;
}
}
int query(int x) {
int res = 0;
for (int i = x; i; i -= (i & (-i))) {
res += c[i];
}
return res;
}
void update(int x, int y, int v) {
update(x, v);
update(y + 1, -v);
}
void treeupdate(int x, int y, int v) {
while (top[x] != top[y]) {
if (dp[top[x]] < dp[top[y]]) {
swap(x, y);
}
update(dfn[top[x]], dfn[x], v);
x = fa[top[x]];
}
if (dp[x] > dp[y]) {
swap(x, y);
}
update(dfn[x], dfn[y], v);
}
void solve() {
scanf("%d", &n);
for (int i = 1, u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
add_edge(v, u);
}
dfs(1, 0, 1);
dfs2(1, 1);
for (int i = 1; i <= n; ++i) {
ff[i][0] = fa[i];
}
for (int j = 1; (1 << j) <= n; ++j) {
for (int i = 1; i <= n; ++i) {
ff[i][j] = ff[ff[i][j - 1]][j - 1];
}
}
scanf("%d", &q);
while (q--) {
int m;
scanf("%d", &m);
for (int i = 1; i <= m; ++i) {
scanf("%d", &a[i]);
}
if (m == 1) {
puts("YES");
continue;
}
sort(a + 1, a + m + 1, cmp);
map<int, int> mp;
bool f1 = 0;
for (int i = 1; i <= m; ++i) {
if ((++mp[dp[a[i]]]) > 2) {
puts("NO");
f1 = 1;
break;
}
}
if (f1) {
continue;
}
int x = -1, y = -1;
if (dp[a[1]] == dp[a[2]]) {
x = a[1];
y = a[2];
} else {
x = a[1];
for (int i = 2; i <= m; ++i) {
int dif = dp[a[1]] - dp[a[i]];
if (jump(a[1], dif) != a[i]) {
y = a[i];
break;
}
}
if (y == -1) {
puts("YES");
continue;
}
}
bool flag = 1;
treeupdate(x, y, 1);
for (int i = 1; i <= m; ++i) {
if (query(dfn[a[i]]) == 0) {
flag = 0;
break;
}
}
treeupdate(x, y, -1);
puts(flag ? "YES" : "NO");
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}