在Scala IDEA for Eclipse或IDEA里程序编译实现与在Spark Shell下的对比(其实就是那么一回事)
不多说,直接上干货!
比如,我这里拿主成分分析(PCA)。
1、主成分分析(PCA)的概念介绍
主成分分析(PCA) 是一种对数据进行旋转变换的统计学方法,其本质是在线性空间中进行一个基变换,使得变换后的数据投影在一组新的“坐标轴”上的方差最大化,随后,裁剪掉变换后方差很小的“坐标轴”,剩下的新“坐标轴”即被称为 主成分(Principal Component) ,它们可以在一个较低维度的子空间中尽可能地表示原有数据的性质。主成分分析被广泛应用在各种统计学、机器学习问题中,是最常见的降维方法之一。PCA有许多具体的实现方法,可以通过计算协方差矩阵,甚至是通过上文提到的SVD分解来进行PCA变换。
2、主成分分析(PCA)的变换
MLlib提供了两种进行PCA变换的方法,第一种与上文提到的SVD分解类似,位于org.apache.spark.mllib.linalg
包下的RowMatrix
中,这里,我们同样读入上文中提到的mx.txt
文件,对其进行PCA变换:
在Spark Shell里
scala> import org.apache.spark.mllib.linalg.Vectors scala> import org.apache.spark.mllib.linalg.distributed.RowMatrix scala> val data = sc.textFile("mx.txt").map(_.split(" ").map(_.toDouble)).map(line => Vectors.dense(line)) data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] = MapPartitionsRDD[3] at map at :31 //通过RDD[Vectors]创建行矩阵 scala> val rm = new RowMatrix(data) rm: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix@4397952a //保留前3个主成分 scala> val pc = rm.computePrincipalComponents(3) pc: org.apache.spark.mllib.linalg.Matrix = -0.41267731212833847 -0.3096216957951525 0.1822187433607524 0.22357946922702987 -0.08150768817940773 0.5905947537762997 -0.08813803143909382 -0.5339474873283436 -0.2258410886711858 0.07580492185074224 -0.56869017430423 -0.28981327663106565 0.4399389896865264 -0.23105821586820194 0.3185548657550075 -0.08276152212493619 0.3798283369681188 -0.4216195003799105 0.3952116027336311 -0.19598446496556066 -0.17237034054712738 0.43580231831608096 -0.023441639969444372 -0.4151661847170216 0.468703853681766 0.2288352748369381 0.04103087747663084
可以看到,主成分矩阵是一个尺寸为(9,3)的矩阵,其中每一列代表一个主成分(新坐标轴),每一行代表原有的一个特征,而a.mat
矩阵可以看成是一个有4个样本,9个特征的数据集,那么,主成分矩阵相当于把原有的9维特征空间投影到一个3维的空间中,从而达到降维的效果。可以通过矩阵乘法来完成对原矩阵的PCA变换,可以看到原有的(4,9)矩阵被变换成新的(4,3)矩阵。
scala> val projected = rm.multiply(pc) projected: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix@2a805829 scala> projected.rows.foreach(println) [12.247647483894383,-2.725468189870252,-5.568954759405281] [2.8762985358626505,-2.2654415718974685,1.428630138613534] [12.284448024169402,-12.510510992280857,-0.16048149283293078] [-1.2537294080109986,-10.15675264890709,-4.8697886049036025]
需要注意的是,MLlib提供的PCA变换方法最多只能处理65535维的数据。
在Scala IDEA for Eclipse或IDEA里程序编译实现
参考
http://mocom.xmu.edu.cn/article/show/58627a2faa2c3f280956e7ae/0/1
作者:大数据和人工智能躺过的坑
出处:http://www.cnblogs.com/zlslch/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,否则保留追究法律责任的权利。
如果您认为这篇文章还不错或者有所收获,您可以通过右边的“打赏”功能 打赏我一杯咖啡【物质支持】,也可以点击右下角的【好文要顶】按钮【精神支持】,因为这两种支持都是我继续写作,分享的最大动力!