Hadoop概念学习系列之谈hadoop/spark里分别是如何实现容错性?(四十二)
Hadoop使用数据复制来实现容错性(I/O高)
Spark使用RDD数据存储模型来实现容错性。
RDD是只读的、分区记录的集合。如果一个RDD的一个分区丢失,RDD含有如何重建这个分区的相关信息。这就避免了使用数据复制来保证容错性的要求,从而减少了对磁盘的访问。通过RDD,后续步骤如果需要相同数据集时就不必重新计算或从磁盘加载。
作者:大数据和人工智能躺过的坑
出处:http://www.cnblogs.com/zlslch/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,否则保留追究法律责任的权利。
如果您认为这篇文章还不错或者有所收获,您可以通过右边的“打赏”功能 打赏我一杯咖啡【物质支持】,也可以点击右下角的【好文要顶】按钮【精神支持】,因为这两种支持都是我继续写作,分享的最大动力!