Storm概念学习系列之Blot消息处理者
不多说,直接上干货!
Bolt消息处理者
认识了消息源Spout和消息的数据存储元组Tuple,接下来了解消息的处理者Bolt。Bolt是接收Spout发出元组Tuple后处理数据的组件,所有的消息处理逻辑被封装在Bolt中,Bolt负责处理输入的数据流并产生输出的新数据流。
1. Bolt介绍
消息处理者Bolt在Storm中是一个被动的角色。Bolt把元组作为输入,然后产生新的元组作为输出。
1.1 Bolt的功能
Bolt可以执行过滤、函数操作、合并、写数据库等操作。Bolt还可以简单地传递消息流,复杂的消息流处理往往需要很多步骤,因此也就需要很多Bolt来处理。
Bolt可以发出超过一个的流。为此,使用OutputFieldsDeclarer类的declareStream()方法声明多个流,并使用OutputCollector类的emit()方法指定发射的流。
1.2 Bolt的生命周期
首先,客户端机器创建Bolt,然后将其序列化为拓扑,并提交给集群中的主机。之后集群启动Worker进程,反序列化Bolt,调用prepare方法开始处理元组。
接下来,Bolt处理Tuple,Bolt处理一个输入Tuple,发射0个或者多个Tuple。
然后,调用ack通知Storm自己已经处理过这个Tuple了。Storm提供了一个IBasicBolt自动调用ack。
Bolt类接收由Spout或者其他上游Bolt类发来的Tuple,对其进行处理。Bolt的生命周期如图1所示。
图1 Bolt的生命周期
在创建Bolt对象时,通过构造方法初始化成员变量,当Bolt被提交到集群时,这些成员变量也会被序列化,所以通过反序列化,可以获取到这些成员变量。
1.3 Bolt的组件
IComponent顾名思义,是所有组件的接口:IBasicBolt、IRichBolt、IBatchBolt都继承自IComponent;
IBolt接口是IRichBolt要继承的接口;
还有一些以Base开头的Bolt类,如BaseBasicBolt、BaseBatchBolt、BaseRichBolt、BaseTransactionalBolt等,在这些类中需要注意的是所实现的方法都为空,或者返回值为null,其中,还有一个接口BaseComponent,是Storm提供的一个比较方便的抽象类,这个抽象类及其子类都或多或少实现了其接口定义的部分方法。从图1中,可以从整体上看到这些类的关系图,从而理清这些类之间的关系及结构。
图2 Bolt相关组件的继承关系图
1.4 Bolt常用类
Bolt比较常用的类是BaseRichBolt、BaseBasicBolt等。这两个类继承的父类如图3和图4所示,它们的共同之处是父类中都有BaseComponent和ICompont。不同之处是BaseRichBolt的父接口中有IBolt和IRichBolt,而BaseBasicBolt只有IBasicBolt。
图3 BaseRichBolt类图
图4 BaseBasicBolt类图
比较完了父类,还没有真正从使用的本质上区别这两者。下面就比较这两个类的方法。图5为IBolt接口的方法,这是BaseRichBolt继承的父接口或者类之一,IBolt具备的方法与IBasicBolt的方法结构类似,但是有本质区别,那就是方法的作用不同。IBasicBolt接口的方法如图6所示。
图5 IBolt接口的主要方法
图6 IBasicBolt接口的主要方法
IBolt继承了java.io.Serializable,在Nimbus上提交Topology以后,创建出来的Bolt在序列化后被发送到具体执行的Worker上,Worker在执行该Bolt时,先调用prepare方法传入当前执行的上下文,然后调用execute方法,对Tuple进行处理,并用prepare方法传入的OutputCollector的ack方法(表示成功)或fail方法(表示失败)来反馈处理结果。而IBasicBolt接口在执行execute方法时,自动调用ack方法,其目的就是实现该接口的Bolt时,不用在代码中提供反馈结果,Storm内部会自动反馈成功。
Bolt实例
下面的ClassifyBolt实现了BaseRichBolt接口,该类需要实现的主要方法如图7所示。
图7 ClassifyBolt的主要方法
1、prepare方法
prepare方法和Spout中的open方法类似,为Bolt提供了OutputCollector,用来从Bolt中发送Tuple。在Bolt中载入新的线程进行异步处理。OutputCollector是线程安全的,并且随时都可以调用它。
在Bolt中,Tuple的发送可以在prepare、execute、cleanup等方法中进行,但一般都是在execute中进行。
示例代码如下:
public void prepare(Map conf, TopologyContext context, OutputCollector collector) { _collector = collector; }
2、declareOutputFields方法
用于声明当前Bolt发送的Tuple中包含的字段,和Spout中的类似。当前Bolt类发送的Tuple包含了两个字段:gt和lt。
示例代码如下:
public void declareOutputFields(OutputFieldsDeclarer declarer) { // 在geThan流中声明为gt declarer.declareStream("geThan", new Fields("gt")); // 在lessThan流中声明为lt declarer.declareStream("lessThan", new Fields("lt")); }
Bolt可以发射多条消息流,使用OutputFieldsDeclarer.declareStream方法来定义流,之后使用OutputCollector.emit来选择要发射的流。
3、getComponentConf?iguration方法
和Spout类一样,在Bolt中也可以有getComponentConf?iguration方法。示例代码如下:
public Map<String, Object> getComponentConf?iguration() { Map<String, Object> conf = new HashMap<String, Object>(); conf.put(Conf?ig.TOPOLOGY_TICK_TUPLE_FREQ_SECS, emitFrequencyInSeconds); return conf; }
此例定义了从系统组件“_system”的“_tick”流中发送Tuple到当前Bolt的频率,当系统需要每隔一段时间执行特定的处理时,就可以利用该系统组件的特性来完成。
4、execute方法
Bolt的主要方法是execute,它以一个Tuple作为输入,Bolt使用OutputCollector来发射Tuple,Bolt必须为它处理的每一个Tuple调用OutputCollector的ack方法,以通知Storm该Tuple被处理完成了,从而通知该Tuple的发射者Spout。
public void execute(Tuple input) { int randomInt = input.getIntegerByField("randomInt"); // 大于等于50的放在一起 if(randomInt >= CLASSIFY_FLAG){ collector.emit("geThan", new Values(randomInt)); }else{ // 小于50的放在一起 collector.emit("lessThan",new Values(randomInt)); } collector.ack(input); }
execute是Bolt中最关键的一个方法,对Tuple的处理都可以放到此方法中进行。具体的发送也是通过emit方法来完成的。此时,emit方法有两种情况,一种是方法中只有一个参数,另一种是方法中有两个参数。
1)emit有一个参数:该参数是发送到下游Bolt的Tuple,此时,由上游发来的旧的Tuple在此隔断,新的Tuple和旧的Tuple不再属于同一棵Tuple树。新的Tuple另起一棵新的Tuple树。
2)emit有两个参数:第一个参数是旧的Tuple的输入流,第二个参数是发往下游Bolt的新的Tuple流。此时,新的Tuple和旧的Tuple仍然属于同一棵Tuple树,即如果下游的Bolt处理Tuple失败,则向上传递到当前Bolt,当前Bolt根据旧的Tuple继续往上游传递,申请重发失败的Tuple,保证Tuple处理的可靠性。
这两种情况都要根据用户的场景来确定。示例代码如下:
public void execute(Tuple tuple) { _collector.emit(tuple, new Values(tuple.getString(0) + "!!!")); _collector.ack(tuple); } public void execute(Tuple tuple) { _collector.emit(new Values(tuple.getString(0) + "!!!")); }
此外还有ack、fail、cleanup等方法,其中cleanup方法和Spout中的close方法类似,都是在当前组件关闭时调用,但是针对实时计算来说,除非一些特殊的场景要求以外,这两个方法一般都很少用到。
如下面,
作者:大数据和人工智能躺过的坑
出处:http://www.cnblogs.com/zlslch/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,否则保留追究法律责任的权利。
如果您认为这篇文章还不错或者有所收获,您可以通过右边的“打赏”功能 打赏我一杯咖啡【物质支持】,也可以点击右下角的【好文要顶】按钮【精神支持】,因为这两种支持都是我继续写作,分享的最大动力!