Spark 概念学习系列之从物理执行的角度透视spark Job(十七)
本博文主要内容:
1、再次思考pipeline
2、窄依赖物理执行内幕
3、宽依赖物理执行内幕
4、Job提交流程
一:再次思考pipeline
即使采用pipeline的方式,函数f对依赖的RDD中的数据的操作也会有2种方式:
1:f(record), f作用于集合的每一条记录,每次只作用于一条记录。
2、f(redord), f一次性作用于集合的全部数据。
Spark采用的是第一种方式,原因:
1、spark无需等待,可以最大化的使用集群计算资源。
2、减少OOM的发生
3、最大化的有利于开发
4、可以精准的控制每一个Partition本身(Dependency)及内部的计算(computer)
5、基于lineage的算子流动函数式编程,节省了中间结果的产生,并可以最快的恢复
疑问:会不会增加网络通信?当然不会, 因为在pipeline!
二: 思考Spark Job 具体的物理执行
Spark Application 里面可以产生1个或者多个job,例如spark-shell默认启动的时候内部就没有Job,只是作为资源的分配程序,可以在spark-shell里面写代码
产生若干个Job,普通程序中一般而言可以有不同的Action,每一个Action一般也就触发一个/job.
Spark 是 MapReduce思想的一种更加精致和高效的实现,MapReduce有很多具体不同的实现,例如Hadoop 的Mapreduce基本计算流程如下
:首先是以JVM为对象的并发 执行Mapper,Mapper中map的执行会产生输出数据,输出数据会经过Partition指定的规则放在Local FileSystem中,然后
经由Shuffle、 sort、Aggreate变成Reducer中的reduce的输入,执行reduce产生最终的执行结果:Hadoop Mapreduce执行的流程虽然很简单,但是过于死板,尤其
在构造复杂算法(迭代)的时候非常不利于算法的实现。且执行效率极为低下。
Spark算法构造和物理执行是最基本核心算法:最大化pipeline!
基于Pipeline的思想,数据被使用的时候才开始计算,从数据流动的角度来讲,是数据流动到计算的位置!!!实际上从逻辑的角度来看, 是算子在数据上流动。
从算法构建的角度而言:肯定是算子作用于数据,所以是算子在数据上流动,方便算法的构建!
从物理执行的角度而言:是数据流动到计算的位置。方便系统最为高效的运行!
对于pipeline而言,数据计算的位置就是每个Stage中最后的RDD, 一个震撼人心的内幕真想就是:每个Stage中除了最后一个RDD 算子是真实的外,前面的算子都是假的。
由于计算的Lazy特性,导致计算从后往前回溯形成Computing Chain,导致的结果就是需要首先计算出具体一个Stage内部左侧的RDD中本次计算依赖的Partiton。
三:窄依赖的物理执行内幕
1、 一个Stage内部的RDD都是窄依赖,窄依赖计算本身是逻辑上看是从Stage内部最左侧的RDD开始立即计算的,根据Computing Chain,数据
从一个计算步骤流动到下一个结算步骤,以此类推(算的时候从前往后), 直到计算到Stage内部的最后一个RDD产生计算结果。
Computiing Chain 的构建是从后往前回溯构建而成,而实际的物理计算则是让数据从前往后在算子上流动,直到流动到不能在流动位置才开始计算下一个Record。这就导致一个美好的结果,后面的RDD 对前面RDD的依赖虽然是Partition级别数据集合的依赖,但是并不需要父RDD把partition中所有Records计算完毕才整体往后流动数据进行计算,这就极大的 提高了计算速率!
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.rdd import scala.reflect.ClassTag import org.apache.spark.{Partition, TaskContext} /** * An RDD that applies the provided function to every partition of the parent RDD. */ private[spark] class MapPartitionsRDD[U: ClassTag, T: ClassTag]( prev: RDD[T], f: (TaskContext, Int, Iterator[T]) => Iterator[U], // (TaskContext, partition index, iterator) preservesPartitioning: Boolean = false) extends RDD[U](prev) { override val partitioner = if (preservesPartitioning) firstParent[T].partitioner else None override def getPartitions: Array[Partition] = firstParent[T].partitions override def compute(split: Partition, context: TaskContext): Iterator[U] = f(context, split.index, firstParent[T].iterator(split, context)) }
四: 宽依赖物理执行内幕
提示:写代码的时候尽量减少宽依赖
必须等待依赖的父Stage中的最后一个RDD把全部数据彻底计算完成,才能够经过shuffle来计算当前的Stage
遇到 shuffle级别的就是形成stage
所有依赖父Stage,是拿所有Stage的数据还是拿一部分数据:拿一部分数据,算一部分。
计算数据是从Dependency来的;
spark作业提交都是触发Action
源码分析类:
==========宽依赖物理执行内幕 ============
必须等到依赖的父Stage中的最后一个RDD把全部数据彻底计算完毕才能够经过shuffle来计算当前的Stage。
这样写代码的时候尽量避免宽依赖!!!
/**
* Implemented by subclasses to return how this RDD depends on parent RDDs. This method will only
* be called once, so it is safe to implement a time-consuming computation in it.
*/
protected def getDependencies: Seq[Dependency[_]] = deps
compute负责接受父Stage的数据流,计算出record
五、Job提交流程
==========Job提交流程 ============
作业提交,触发Action
/** * Run a function on a given set of partitions in an RDD and pass the results to the given * handler function. This is the main entry point for all actions in Spark. */ def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], resultHandler: (Int, U) => Unit): Unit = { if (stopped.get()) { throw new IllegalStateException("SparkContext has been shutdown") } val callSite = getCallSite val cleanedFunc = clean(func) logInfo("Starting job: " + callSite.shortForm) if (conf.getBoolean("spark.logLineage", false)) { logInfo("RDD‘s recursive dependencies:\n" + rdd.toDebugString) } dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get) progressBar.foreach(_.finishAll()) rdd.doCheckpoint() } /** * Run an action job on the given RDD and pass all the results to the resultHandler function as * they arrive. * * @param rdd target RDD to run tasks on * @param func a function to run on each partition of the RDD * @param partitions set of partitions to run on; some jobs may not want to compute on all * partitions of the target RDD, e.g. for operations like first() * @param callSite where in the user program this job was called * @param resultHandler callback to pass each result to * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name * * @throws Exception when the job fails */ def runJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: CallSite, resultHandler: (Int, U) => Unit, properties: Properties): Unit = { val start = System.nanoTime val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties) waiter.awaitResult() match { case JobSucceeded => logInfo("Job %d finished: %s, took %f s".format (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9)) case JobFailed(exception: Exception) => logInfo("Job %d failed: %s, took %f s".format (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9)) // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler. val callerStackTrace = Thread.currentThread().getStackTrace.tail exception.setStackTrace(exception.getStackTrace ++ callerStackTrace) throw exception } } /** * Submit an action job to the scheduler. * * @param rdd target RDD to run tasks on * @param func a function to run on each partition of the RDD * @param partitions set of partitions to run on; some jobs may not want to compute on all * partitions of the target RDD, e.g. for operations like first() * @param callSite where in the user program this job was called * @param resultHandler callback to pass each result to * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name * * @return a JobWaiter object that can be used to block until the job finishes executing * or can be used to cancel the job. * * @throws IllegalArgumentException when partitions ids are illegal */ def submitJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: CallSite, resultHandler: (Int, U) => Unit, properties: Properties): JobWaiter[U] = { // Check to make sure we are not launching a task on a partition that does not exist. val maxPartitions = rdd.partitions.length partitions.find(p => p >= maxPartitions || p < 0).foreach { p => throw new IllegalArgumentException( "Attempting to access a non-existent partition: " + p + ". " + "Total number of partitions: " + maxPartitions) } val jobId = nextJobId.getAndIncrement() if (partitions.size == 0) { // Return immediately if the job is running 0 tasks return new JobWaiter[U](this, jobId, 0, resultHandler) } assert(partitions.size > 0) val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _] val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler) eventProcessLoop.post(JobSubmitted( jobId, rdd, func2, partitions.toArray, callSite, waiter, SerializationUtils.clone(properties))) waiter }
作业:
写一下我理解中的spark job物理执行。
感谢下面的博主:
http://feiweihy.blog.51cto.com/6389397/1743588
作者:大数据和人工智能躺过的坑
出处:http://www.cnblogs.com/zlslch/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,否则保留追究法律责任的权利。
如果您认为这篇文章还不错或者有所收获,您可以通过右边的“打赏”功能 打赏我一杯咖啡【物质支持】,也可以点击右下角的【好文要顶】按钮【精神支持】,因为这两种支持都是我继续写作,分享的最大动力!