105. 先序、中序构造树
Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: def build(preorder,inorder,pre_left,pre_right,in_left,in_right): if pre_right > len(preorder) or in_right > len(preorder): return None if in_left > in_right or pre_left > pre_right: return None val = preorder[pre_left] node = TreeNode(val) hd_index = inorder.index(val) left_cnt = hd_index - in_left right_cnt = in_right - hd_index node.left = build(preorder,inorder,pre_left+1,pre_left+left_cnt,in_left,in_left+left_cnt-1) node.right = build(preorder,inorder,pre_left+left_cnt+1,pre_right,in_left+left_cnt+1,in_right) return node n = len(preorder) return build(preorder,inorder,0,n-1,0,n-1)
class Solution { private: unordered_map<int,int> index_map; public: TreeNode* build(int pre_left,int pre_right, vector<int>& preorder, int in_left, int in_right,vector<int>& inorder) { if(pre_left > pre_right || in_left > in_right) return nullptr; int inorder_index = index_map[preorder[pre_left]]; int left_length = inorder_index - in_left; TreeNode* root = new TreeNode(preorder[pre_left]); root->left = build(pre_left+1,pre_left+left_length,preorder,in_left,inorder_index-1,inorder); root->right= build(pre_left+left_length+1,pre_right,preorder,inorder_index+1,in_right,inorder); return root; } TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { for(int i = 0; i < inorder.size(); ++i) { index_map[inorder[i]] = i; } return build(0,preorder.size()-1,preorder,0,inorder.size()-1,inorder); } };
1 class Solution { 2 public TreeNode buildTree(int[] preorder, int[] inorder) { 3 return help(preorder,0,preorder.length-1,inorder,0,inorder.length-1); 4 } 5 private TreeNode help(int[] preorder,int pre_start,int pre_end,int[] inorder,int in_start,int in_end){ 6 if(in_start>in_end || pre_start>pre_end) return null; 7 8 9 TreeNode root = new TreeNode(preorder[pre_start]); 10 int j = in_start; 11 while(preorder[pre_start]!=inorder[j]&& j <=pre_end) 12 j++; 13 //注意下标!!!!!!!! 14 root.left = help(preorder,pre_start+1,pre_start+(j-in_start),inorder,in_start,j-1); 15 root.right = help(preorder,pre_start+(j-in_start)+1,pre_end,inorder,j+1,in_end); 16 return root; 17 } 18 }