paddle lookalike 实现(paddle reshape)

需求:算 batch*1*32 与 batch*10*32 attention

 

 1     def local_attention_unit(self, target_user, user_seeds):
 2         user_target_reshape = fluid.layers.unsqueeze(target_user,axes=[1]) 
 3         user_seeds_reshape = fluid.layers.reshape(user_seeds, shape=[-1, 10, 32])
 4         out = fluid.layers.matmul(user_target_reshape, user_seeds_reshape, transpose_y=True)  # -1,1,10
 5         out = fluid.layers.softmax(out) #-1,1,10
 6         out = fluid.layers.matmul(out,user_seeds_reshape) #-1,1,32
 7         out = fluid.layers.reduce_sum(out, dim=1)  # batch_size * emb_size
 8         return out
 9 
10 self.lookalike_cluster = fluid.layers.data(name="lookalike_cluster", shape=[-1,320], dtype="float32", lod_level=0, append_batch_size=False)
11 
12  self.user_gcf_vec = fluid.layers.data(name="user_gcf_vec", shape=[-1,32], dtype="float32", lod_level=0, append_batch_size=False)
13 
14 attention_unit_out = self.local_attention_unit( self.user_gcf_vec, self.lookalike_cluster)

 

 

reshape 具体逻辑:

 1 import paddle
 2 import paddle.fluid as fluid
 3 import numpy as np
 4 #2*6
 5 data_x = np.array([[1.0, 1.0, 1.0,3.0, 3.0, 3.0],[1.0, 2.0, 1.0,4.0, 3.0, 5.0]])
 6 print data_x
 7 with fluid.dygraph.guard():
 8     x = fluid.dygraph.to_variable(data_x)
 9     out_z2 = fluid.layers.reshape(x, shape=[-1,2,3])
10     print(out_z2.numpy())

 

 

posted @ 2021-09-09 00:01  乐乐章  阅读(422)  评论(0编辑  收藏  举报