239. Sliding Window Maximum (滑动窗口最大值, 大根堆or 单调队列)
You are given an array of integers nums
, there is a sliding window of size k
which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3 Output: [3,3,5,5,6,7] Explanation: Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
方法一:优先队列(堆)
对于「最大值」,我们可以想到一种非常合适的数据结构,那就是优先队列(堆),其中的大根堆可以帮助我们实时维护一系列元素中的最大值。
import heapq class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: q = [(-nums[i],i) for i in range(k)] n = len(nums) heapq.heapify(q) res = [-q[0][0]] for i in range(k,n): heapq.heappush(q,(-nums[i],i)) while q[0][1] <= i - k : heapq.heappop(q) res.append(-q[0][0]) return res
class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: n = len(nums) q = collections.deque() for i in range(k): while q and nums[i] >= nums[q[-1]]: q.pop() q.append(i) ans = [nums[q[0]]] for i in range(k, n): while q and nums[i] >= nums[q[-1]]: q.pop() q.append(i) while q[0] <= i - k: q.popleft() ans.append(nums[q[0]]) return ans
法1:
1 class Solution { 2 public: 3 vector<int> maxSlidingWindow(vector<int>& nums, int k) { 4 vector<int> res; 5 priority_queue<pair<int, int>> q; 6 for(int i = 0; i < k;++i) { 7 q.push({nums[i],i}); 8 } 9 res.push_back(q.top().first); 10 11 for(int i = k;i < nums.size();++i) { 12 q.push({nums[i],i}); 13 while(q.top().second + k <= i) { 14 q.pop(); 15 } 16 res.push_back(q.top().first); 17 } 18 return res; 19 } 20 };
法二:
https://labuladong.gitbook.io/algo/mu-lu-ye-1/mu-lu-ye-2/dan-tiao-dui-lie
首先,明确一个概念,单调队列是在队列中所有的元素都是单调的,要么单调增,要么单调减,新增元素时到队尾,此时队列不符合单调性就将队尾元素出队,直到队列单调或空。
1 class MonotonicQueue { 2 private: 3 deque<int> data; 4 public: 5 void push(int n) { 6 while (!data.empty() && data.back() < n) 7 data.pop_back(); 8 data.push_back(n); 9 } 10 11 int max() { return data.front(); } 12 13 void pop(int n) { 14 if (!data.empty() && data.front() == n) 15 data.pop_front(); 16 } 17 }; 18 19 class Solution { 20 public: 21 vector<int> maxSlidingWindow(vector<int>& nums, int k) { 22 MonotonicQueue window; 23 vector<int> res; 24 for (int i = 0; i < nums.size(); i++) { 25 if (i < k - 1) { //先填满窗口的前 k - 1 26 window.push(nums[i]); 27 } else { // 窗口向前滑动 28 window.push(nums[i]); 29 res.push_back(window.max()); 30 window.pop(nums[i - k + 1]); 31 } 32 } 33 return res; 34 } 35 };
1 class Solution { 2 public: 3 vector<int> maxSlidingWindow(vector<int>& nums, int k) { 4 deque<int> q; 5 vector<int> res; 6 for (int i = 0; i < nums.size(); i++) { 7 // push 8 while(!q.empty()&& q.back() < nums[i]) { 9 q.pop_back(); 10 } 11 q.push_back(nums[i]); 12 if (i >= k - 1) { //前k - 1 已经填满 13 res.push_back(q.front()); 14 // pop 15 if(!q.empty() && nums[i - k + 1]== q.front()) { 16 q.pop_front(); 17 } 18 } 19 } 20 return res; 21 } 22 };