题解:CF381B Sereja and Stairs
涉及知识点:构造。
解题思路
题目要求 \(a\) 的长度要最长,所以需要 \(a_1\sim a_i\) 和 \(a_i \sim a_{|a|}\) 最长,于是直接构造一个单调递增和单调递减的序列即可。
由于数据较小,可利用桶通过此题。
注意:
- \(a_1\sim a_{i-1}\) 与 \(a_{i + 1} \sim a_{|a|}\) 中可以有重复的元元素,但不能有两个 \(a_i\)。
代码
#include <bits/stdc++.h>
#define int long long
#define ll __int128
#define db double
#define ldb long double
#define vo void
#define endl '\n'
#define il inline
#define re register
#define ve vector
#define p_q priority_queue
#define PII pair<int, int>
#define u_m unordered_map
#define bt bitset
using namespace std;
//#define O2 1
#ifdef O2
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3, "Ofast", "inline")
#endif
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
char gc() {
if (p1 == p2) p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
void read(T &x) {
double tmp = 1;
bool sign = 0;
x = 0;
char ch = gc();
while (!isdigit(ch)) {
if (ch == '-') sign = 1;
ch = gc();
}
while (isdigit(ch)) {
x = x * 10 + (ch - '0');
ch = gc();
}
if (ch == '.') {
ch = gc();
while (isdigit(ch)) {
tmp /= 10.0, x += tmp * (ch - '0');
ch = gc();
}
}
if (sign) x = -x;
}
void read(char *s) {
char ch = gc();
for (; blank(ch); ch = gc());
for (; !blank(ch); ch = gc()) * s++ = ch;
*s = 0;
}
void read(char &c) {
for (c = gc(); blank(c); c = gc());
}
void push(const char &c) {
if (pp - pbuf == MAXSIZE) fwrite(pbuf, 1, MAXSIZE, stdout), pp = pbuf;
*pp++ = c;
}
template <class T>
void write(T x) {
if (x < 0) x = -x, push('-');
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10, x /= 10;
} while (x);
while (top) push(sta[--top] + '0');
}
template <class T>
void write(T x, char lastChar) {
write(x), push(lastChar);
}
} io;
namespace COMB {
int fact[200000];
int Triangle[1010][1010];
void Fact(int n, int mod) {
fact[0] = 1;
for (int i = 1; i <= n; i ++ ) fact[i] = ((fact[i - 1]) % mod * (i % mod)) % mod;
}
void Pascal_s_triangle(int n, int mod) {
for (int i = 0; i <= n; i ++ ) Triangle[i][0] = 1;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= i; j ++ )
Triangle[i][j] = (Triangle[i - 1][j] + Triangle[i - 1][j - 1]) % mod;
}
int pw(int x, int y, int mod) {
int res = 1;
while (y) {
if (y & 1) res = ((res % mod) * (x % mod)) % mod;
x = (x % mod) * (x % mod) % mod;
y >>= 1;
}
return res;
}
int pw(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res *= x;
x *= x;
y >>= 1;
}
return res;
}
int GCD(int x, int y, int mod) {
return __gcd(x, y) % mod;
}
int LCM(int x, int y, int mod) {
return (((x % mod) * (y % mod)) % mod / (GCD(x, y, mod) % mod)) % mod;
}
int C(int n, int m, int mod) {
if (m > n || m < 0) return 0;
return fact[n] * pw(fact[m], mod - 2, mod) % mod * pw(fact[n - m], mod - 2, mod) % mod;
}
int Ask_triangle(int x, int y) {
return Triangle[x][y];
}
}
using namespace COMB;
//#define fre 1
#define IOS 1
//#define multitest 1
const int N = 4e6 + 10;
const int M = 4e5 + 10;
const int inf = 1e12;
const int Mod = 1e9 + 9;
namespace zla {
int n, a[N], t[N], ans[N], len;
il void Init() {
cin >> n;
for (int i = 1; i <= n; i ++ ) {
cin >> a[i];
t[a[i]] ++;
}
}
il void Solve() {
for (int i = 1; i <= 5000; i ++ ) {
if (t[i]) {
ans[++ len] = i;
t[i] --;
}
}
int T = ans[len - 1];
for (int i = T; i >= 1; i -- )
if (t[i]) {
ans[++ len] = i;
t[i] --;
}
cout << len << endl;
for (int i = 1; i <= len; i ++ ) cout << ans[i] << " ";
}
il void main() {
Init();
Solve();
}
}
signed main() {
int T;
#ifdef IOS
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#endif
#ifdef fre
freopen(".in", "r", stdin);
freopen(".out", "w", stdout);
#endif
#ifdef multitest
cin >> T;
#else
T = 1;
#endif
while (T--) zla::main();
return 0;
}