NV triton启动方式说明

  1. 地址:
    1. server:https://github.com/triton-inference-server/server
    2. client:https://github.com/triton-inference-server/client
  2. 编译部署方式:
    1. xx.yy-py3 包括server,可用于直接部署server镜像
    2. xx.yy-py3-sdk 包括python、c++ client示例,用于直接使用client镜像
    3. xx.yy-py3-min 基础环境,用于编译开发,教程:https://github.com/triton-inference-server/server/blob/main/docs/build.md#ubuntu-docker
    4. 非docker编译开发,教程:https://github.com/triton-inference-server/server/blob/main/docs/build.md#ubuntu-without-docker
  3. 以gpu部署方式为例:
    1. 部署server:

      docker pull nvcr.io/nvidia/tritonserver:21.05-py3
      git clone https://github.com/triton-inference-server/server.git
      cd server/docs/examples
      ./fetch_models.sh
      docker run --gpus=1 --rm -p8010:8000 -p8011:8001 -p8012:8002 -v/mnt/zhangliang35/code/github/triton/triton-inference-server/server/docs/examples/model_repository:/models nvcr.io/nvidia/tritonserver:21.05-py3 tritonserver --model-repository=/models
       

      测试服务是否正常启动:curl -v localhost:8010/v2/health/ready 返回200表明启动正常。服务8000为rpc端口,8001为rpc端口,8002为Metrics端口

    2. 部署client:

      复制代码
      docker pull nvcr.io/nvidia/tritonserver:21.05-py3-sdk
      docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:21.05-py3-sdk
      /workspace/install/bin/image_client -m densenet_onnx -u localhost:8010 -c 3 -s INCEPTION /workspace/images/mug.jpg
      返回:
      Request 0, batch size 1
      Image '/workspace/images/mug.jpg':
          15.349568 (504) = COFFEE MUG
          13.227468 (968) = CUP
          10.424896 (505) = COFFEEPOT
      复制代码
       

      其中,-i grpc -u localhost:8001 可以指定client请求grpc端口8001

  4. 镜像组成分析:
    1. client:
      1. /workspace/install/bin目录下存放各类client c++ bin文件
      2. /workspace/client中存放client源码
      3. /workspace/build中存放编译产出
      4. /workspace/images中存放测试图片
    2. server(工作目录为/opt/tritonserver):
      1. /bin/tritonserver
      2. backends 存放各类依赖
      3. include、lib存放头文件及so库
      4. nvidia_entrypoint.sh  配置环境,然后透传启动命令

        复制代码
        #!/bin/bash
        # Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
        #
        # Redistribution and use in source and binary forms, with or without
        # modification, are permitted provided that the following conditions
        # are met:
        #  * Redistributions of source code must retain the above copyright
        #    notice, this list of conditions and the following disclaimer.
        #  * Redistributions in binary form must reproduce the above copyright
        #    notice, this list of conditions and the following disclaimer in the
        #    documentation and/or other materials provided with the distribution.
        #  * Neither the name of NVIDIA CORPORATION nor the names of its
        #    contributors may be used to endorse or promote products derived
        #    from this software without specific prior written permission.
        #
        # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
        # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
        # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
        # PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
        # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
        # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
        # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
        # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
        # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
        # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
        # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
        set -e
        cat <<EOF
         
        =============================
        == Triton Inference Server ==
        =============================
         
        NVIDIA Release ${NVIDIA_TRITON_SERVER_VERSION} (build ${NVIDIA_BUILD_ID})
         
        Copyright (c) 2018-2021, NVIDIA CORPORATION.  All rights reserved.
         
        Various files include modifications (c) NVIDIA CORPORATION.  All rights reserved.
         
        This container image and its contents are governed by the NVIDIA Deep Learning Container License.
        By pulling and using the container, you accept the terms and conditions of this license:
        https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license
        EOF
         
        if [[ "$(find -L /usr -name libcuda.so.1 | grep -v "compat") " == " " || "$(ls /dev/nvidiactl 2>/dev/null) " == " " ]]; then
          echo
          echo "WARNING: The NVIDIA Driver was not detected.  GPU functionality will not be available."
          echo "   Use Docker with NVIDIA Container Toolkit to start this container; see"
          echo "   https://github.com/NVIDIA/nvidia-docker."
          ln -s `find / -name libnvidia-ml.so -print -quit` /opt/tritonserver/lib/libnvidia-ml.so.1
          export TRITON_SERVER_CPU_ONLY=1
        else
          ( /usr/local/bin/checkSMVER.sh )
          DRIVER_VERSION=$(sed -n 's/^NVRM.*Kernel Module *\([0-9.]*\).*$/\1/p' /proc/driver/nvidia/version 2>/dev/null || true)
          if [[ ! "$DRIVER_VERSION" =~ ^[0-9]*.[0-9]*(.[0-9]*)?$ ]]; then
            echo "Failed to detect NVIDIA driver version."
          elif [[ "${DRIVER_VERSION%%.*}" -lt "${CUDA_DRIVER_VERSION%%.*}" ]]; then
            if [[ "${_CUDA_COMPAT_STATUS}" == "CUDA Driver OK" ]]; then
              echo
              echo "NOTE: Legacy NVIDIA Driver detected.  Compatibility mode ENABLED."
            else
              echo
              echo "ERROR: This container was built for NVIDIA Driver Release ${CUDA_DRIVER_VERSION%.*} or later, but"
              echo "       version ${DRIVER_VERSION} was detected and compatibility mode is UNAVAILABLE."
              echo
              echo "       [[${_CUDA_COMPAT_STATUS}]]"
              sleep 2
            fi
          fi
        fi
         
        if ! cat /proc/cpuinfo | grep flags | sort -u | grep avx >& /dev/null; then
          echo
          echo "ERROR: This container was built for CPUs supporting at least the AVX instruction set, but"
          echo "       the CPU detected was $(cat /proc/cpuinfo |grep "model name" | sed 's/^.*: //' | sort -u), which does not report"
          echo "       support for AVX.  An Illegal Instrution exception at runtime is likely to result."
          echo "       See https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX ."
          sleep 2
        fi
         
        echo
         
        if [[ $# -eq 0 ]]; then
          exec "/bin/bash"
        else
          exec "$@"
        fi
        复制代码

         

         
posted @   鸭子船长  阅读(1683)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示