NV triton启动方式说明
- 地址:
- 编译部署方式:
- xx.yy-py3 包括server,可用于直接部署server镜像
- xx.yy-py3-sdk 包括python、c++ client示例,用于直接使用client镜像
- xx.yy-py3-min 基础环境,用于编译开发,教程:https://github.com/triton-inference-server/server/blob/main/docs/build.md#ubuntu-docker
- 非docker编译开发,教程:https://github.com/triton-inference-server/server/blob/main/docs/build.md#ubuntu-without-docker
- 以gpu部署方式为例:
-
部署server:
docker pull nvcr.io/nvidia/tritonserver:21.05-py3 git clone https://github.com/triton-inference-server/server.git cd server/docs/examples ./fetch_models.sh docker run --gpus=1 --rm -p8010:8000 -p8011:8001 -p8012:8002 -v/mnt/zhangliang35/code/github/triton/triton-inference-server/server/docs/examples/model_repository:/models nvcr.io/nvidia/tritonserver:21.05-py3 tritonserver --model-repository=/models
测试服务是否正常启动:curl -v localhost:8010/v2/health/ready 返回200表明启动正常。服务8000为rpc端口,8001为rpc端口,8002为Metrics端口
-
部署client:
docker pull nvcr.io/nvidia/tritonserver:21.05-py3-sdk docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:21.05-py3-sdk /workspace/install/bin/image_client -m densenet_onnx -u localhost:8010 -c 3 -s INCEPTION /workspace/images/mug.jpg 返回: Request 0, batch size 1 Image '/workspace/images/mug.jpg': 15.349568 (504) = COFFEE MUG 13.227468 (968) = CUP 10.424896 (505) = COFFEEPOT
其中,-i grpc -u localhost:8001 可以指定client请求grpc端口8001
-
- 镜像组成分析:
- client:
- /workspace/install/bin目录下存放各类client c++ bin文件
- /workspace/client中存放client源码
- /workspace/build中存放编译产出
- /workspace/images中存放测试图片
- server(工作目录为/opt/tritonserver):
- /bin/tritonserver
- backends 存放各类依赖
- include、lib存放头文件及so库
-
nvidia_entrypoint.sh 配置环境,然后透传启动命令
#!/bin/bash # Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. set -e cat <<EOF ============================= == Triton Inference Server == ============================= NVIDIA Release ${NVIDIA_TRITON_SERVER_VERSION} (build ${NVIDIA_BUILD_ID}) Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license EOF if [[ "$(find -L /usr -name libcuda.so.1 | grep -v "compat") " == " " || "$(ls /dev/nvidiactl 2>/dev/null) " == " " ]]; then echo echo "WARNING: The NVIDIA Driver was not detected. GPU functionality will not be available." echo " Use Docker with NVIDIA Container Toolkit to start this container; see" echo " https://github.com/NVIDIA/nvidia-docker." ln -s `find / -name libnvidia-ml.so -print -quit` /opt/tritonserver/lib/libnvidia-ml.so.1 export TRITON_SERVER_CPU_ONLY=1 else ( /usr/local/bin/checkSMVER.sh ) DRIVER_VERSION=$(sed -n 's/^NVRM.*Kernel Module *\([0-9.]*\).*$/\1/p' /proc/driver/nvidia/version 2>/dev/null || true) if [[ ! "$DRIVER_VERSION" =~ ^[0-9]*.[0-9]*(.[0-9]*)?$ ]]; then echo "Failed to detect NVIDIA driver version." elif [[ "${DRIVER_VERSION%%.*}" -lt "${CUDA_DRIVER_VERSION%%.*}" ]]; then if [[ "${_CUDA_COMPAT_STATUS}" == "CUDA Driver OK" ]]; then echo echo "NOTE: Legacy NVIDIA Driver detected. Compatibility mode ENABLED." else echo echo "ERROR: This container was built for NVIDIA Driver Release ${CUDA_DRIVER_VERSION%.*} or later, but" echo " version ${DRIVER_VERSION} was detected and compatibility mode is UNAVAILABLE." echo echo " [[${_CUDA_COMPAT_STATUS}]]" sleep 2 fi fi fi if ! cat /proc/cpuinfo | grep flags | sort -u | grep avx >& /dev/null; then echo echo "ERROR: This container was built for CPUs supporting at least the AVX instruction set, but" echo " the CPU detected was $(cat /proc/cpuinfo |grep "model name" | sed 's/^.*: //' | sort -u), which does not report" echo " support for AVX. An Illegal Instrution exception at runtime is likely to result." echo " See https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX ." sleep 2 fi echo if [[ $# -eq 0 ]]; then exec "/bin/bash" else exec "$@" fi
- client:
联系方式:emhhbmdfbGlhbmcxOTkxQDEyNi5jb20=